期刊文献+

基于时序-偏光特性条状近眼孔径的超多视图三维显示 被引量:3

Super multi-view three-dimensional display based on near-eye timing-polarization-characteristics apertures
下载PDF
导出
摘要 通过沿排列方向间距小于观察者瞳孔直径的4个近眼条状液晶光阀,时序投射各两个视图分别至观察者不同瞳孔,可以基于超多视图实现无聚焦-辐辏冲突的三维显示。但是,一方面,显示频率仅30 Hz,带来闪烁效应;另一方面,条状孔径沿排列方向的小尺寸,严重限制通过该孔径所能观察到场景的视角。本文设计了同时具有时序和偏光特性的近眼条状液晶光阀,并排列各眼对应条状液晶光阀沿观察者双目连线的垂直方向,利用相邻多个液晶光阀所观察到拼合图像相对于仅通过一个液晶光阀所观察场景的视角扩展,基于时序复用和偏光复用的结合进行显示视角的扩展。实验中,将该时序-偏光特性液晶光阀构建为双目眼镜,利用偏振分束器将两台240 Hz电脑显示屏构建形成一个等效正交偏振特性显示屏,两者对应同步刷新显示,实现了对角线视角达70°的超多视图三维显示,离焦模糊效应验证了显示场景的自然聚焦能力。 Through sequentially presenting four perspective views to two eyes of the viewer respectively,Super multi-view three-dimensional(3D)display which is free from vergence-accommodation conflict(VAC)gets demonstrated in our previous work by four near-eye liquid crystal light valves.However,on one hand,the display frequency is only 30 Hz,which brings in obvious flicker.On the other hand,the small aperture size restricted the observed field of view.In this paper,combining with polarization-multiplexing,a spliced image constructed by partial perspective views for different near-eye liquid crystal light valves is generated for a large field of view(FOV).Experimentally,based on an equivalent polarizationcharacteristic display screen which is constructed by two 240 Hz computer display screens through a polar⁃ization beam splitter,flicker-free 60 Hz super multi-view display with a diagonal field of view 70°gets dem⁃onstrated.
作者 范海震 叶秋 黄海坤 刘立林 滕东东 FAN Hai-zhen;YE Qiu;HUANG Hai-kun;LIU Li-lin;TENG Dong-dong(School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China;School of Electronics and Information Technology,Sun Yat-Sen University,Guangzhou 510275,China;School of Physics,Sun Yat-Sen University,Guangzhou 510275,China)
出处 《液晶与显示》 CAS CSCD 北大核心 2022年第5期647-653,共7页 Chinese Journal of Liquid Crystals and Displays
基金 国家自然科学基金(No.11772359) 广东省重点领域研发计划(No.2019B010154002)。
关键词 3D 聚焦-辐辏冲突 超多视图 3D vergence-accommodation conflict super multi-view
  • 相关文献

参考文献3

二级参考文献33

  • 1王琼华. 3D显示器件与技术[M]. 北京: 科学出版社, 2011.
  • 2Lippmann G. La photographie integral[J].Comptes Rendus de l'Académie des Sciences, 1908, 146: 446-451.
  • 3Xiao X, Javidi B, Martinez-Corral M, et al.Advances in three-dimensional integral imaging: sensing, display, and applications[J].Applied Optics, 2013, 52(4): 546-560.
  • 4Ives H E. Optical properties of a lippmann lenticulated sheet[J].Journal of the Optical Society of America A, 1931, 21: 171-176.
  • 5Okano F, Hoshino H, Aral J, et al.Real-time pickup method for a three-dimensional image based on integral photography[J]. Applied Optics, 1997, 36(7): 1598-1603.
  • 6Martínez-Corral M, Martínez-Cuenca R, Saavedra G, Orthoscopic, long-focal-depth 3D integral imaging[C]//Proceedings of the SPIE, Stockholm, Sweden, 2006: 63940H(1-9).
  • 7Aral J, Yamashita T, Miura M, et al. Integral three-dimensional image capture equipment with closely positioned lens array and image sensor[J].Optics Letters, 2013, 38(12): 2044-2046.
  • 8Kim J, Jung J H, Jang C, et al.Real-time capturing and 3D visualization method based on integral imaging[J].Optics Express, 2013, 21(16): 18742-18753.
  • 9Wang X, Hong H. Theoretical analysis for integral imaging performance based on micro-scanning of a microlens array[J].Optics Letters, 2008, 33(5): 449-451.
  • 10Papageorgas P G, Athineos S S, Sgouros N P, et al.3D capturing devices based on the principles of integral photography[C]//1st International Scientific Conference, Tripoli, Libya, 2006.

共引文献69

同被引文献29

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部