期刊文献+

基于KELM与PSO-LSSVM组合核方法的风电功率区间预测研究

Research on Wind Power Interval Prediction Based on Combination Kernel Method of KELM and PSO-LSSVM
下载PDF
导出
摘要 针对风电功率单一方法区间预测性能较差的问题,该文提出一种基于组合核方法的风电功率区间预测模型。首先利用混合核密度估计法,对核极限学习机(kernel extreme learning machine,KELM)和粒子群优化最小二乘支持向量机(particle swarm optimization least square support vector machine,PSO-LSSVM)两种不同的核方法的风电功率点预测误差进行概率密度拟合,并建立区间预测模型;然后使用熵权法确定KELM和PSO-LSSVM的权值并加权组合,得到最终预测区间;最后利用甘肃某风电场的真实风电功率数据验证该方法有效性。实验结果表明,该方法可有效弥补KELM准确性差和PSO-LSSVM可靠性低的缺陷,兼顾风电功率区间预测可靠性和准确性,有效提升区间预测性能。 To save the problem that single method of wind power interval prediction has poor performance,a wind power interval prediction method based on combining kernel method is proposed in this paper. Firstly,the mixed kernel density estimation was used to distribute and fit the wind power prediction errors of two different kinds of kernel methods kernel extreme learning machine(KELM) and particle swarm optimization least square support vector machine(PSO-LSSVM),and the interval prediction probability density was performed. Then the entropy method was used to determine the weights of KELM and PSO-LSSVM,and the weighted combination was used to get the final prediction interval;Finally,the real wind power data of a wind farm in Gansu were used for verification. The experimental results show that this method can compensate the flaw of KELM’s less reliability and PSO-LSSVM’s poor accuracy effectively,and combine the reliability and accuracy of wind power interval prediction,which improve the interval prediction performance effectively.
作者 郝晓弘 薛泽华 裴婷婷 田岭峰 HAO Xiao-hong;XUE Ze-hua;PEI Ting-ting;TIAN Ling-feng(School of Electrical Engineering and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China;Chongqing Power Transmission&Transforming Installation Engineering Co.,Ltd.,Chongqing 400039,China)
出处 《自动化与仪表》 2022年第4期10-14,20,共6页 Automation & Instrumentation
基金 国家自然科学基金项目(51767017)。
关键词 风电功率区间预测 混合核密度估计 熵权法 组合核方法 wind power interval prediction mixed kernel density estimation entropy method combination kernel method
  • 相关文献

参考文献3

二级参考文献40

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2Kennedy J,Eberhart RC.Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks . 1995
  • 3Guang-Bin Huang,Qin-Yu Zhu,Chee-Kheong Siew.Extreme learning machine: Theory and applications[J]. Neurocomputing . 2006 (1)
  • 4Huang, Guang-Bin,Wang, Dian Hui,Lan, Yuan.Extreme learning machines: A survey. International Journal of Machine Learning and Cybernetics . 2011
  • 5Guang-Bin Huang.An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels[J]. Cognitive Computation . 2014 (3)
  • 6Conejo, Antonio J.,Plazas, Miguel A.,Espínola, Rosa,Molina, Ana B.Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. IEEE Transactions on Power Systems . 2005
  • 7Jooyoung Jeon,James W. Taylor.Using Conditional Kernel Density Estimation for Wind Power Density Forecasting. Journal of the American Statistical Association . 2012
  • 8Cheng C,Tay W P,Huang G B.Extreme Learning Machines for Intrusion Detection. Proceedings of2012International Joint Conference on Neural Networks . 2012
  • 9Quan H,Srinivasan D,Khosravi A.Short-term load and wind power forecasting using neural network-based prediction intervals. IEEE Transactions on Neural Networks and Learning Systems . 2014
  • 10WAN Can,XU Zhao,PINSON P,et al.Optimal prediction intervals of wind power generation. IEEE Transactions on Power Systems . 2014

共引文献211

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部