期刊文献+

微分求积法分析平面接头应力奇异性 被引量:1

Analysis on Stress Singularity of Plane Joints With the Differential Quadrature Method
下载PDF
导出
摘要 对于双材料平面接头问题提出了一个分析应力奇性指数的新方法:微分求积法(DQM).首先,将平面接头连接点处位移场的径向渐近展开格式代入平面弹性力学控制方程,获得了关于应力奇性指数的常微分方程组(ODEs)特征值问题.然后,基于DQM理论,将ODEs的特征值问题转化为标准型广义代数方程组特征值问题,求解之可一次性地计算出双材料平面接头连接点处应力奇性指数,同时,一并求出了接头连接点处相应的位移和应力特征函数.数值计算结果说明该文DQM计算平面接头连接点处应力奇性指数的结果是正确的. A novel differential quadrature method(DQM) for analysis of the stress singularity index was proposed. Firstly,the radial asymptotic expansion scheme of the displacement field at the connection point of the plane joint was substituted into the governing equation of plane elasticity, and the eigenvalue problem of ordinary differential equations(ODEs) about the stress singularity index was obtained. Then, based on the DQM theory, the eigenvalue problem of ordinary differential equations was transformed into the eigenvalue problem of standard generalized algebraic equations. The stress singularity index at the connection point of the bi-material plane joint was calculated at one time, and the corresponding displacement and stress characteristic functions at the connection point were obtained at the same time. The numerical results show that,the DQM is correct in calculation of the stress singularity index at the connection point of the plane joint.
作者 葛仁余 张佳宸 马国强 刘小双 牛忠荣 GE Renyu;ZHANG Jiachen;MA Guoqiang;LIU Xiaoshuang;NIU Zhongrong(Key Laboratory for Mechanics,Anhui Polytechnic University,Wuhu,Anhui 241000,P.R.China;College of Civil Engineering,Hefei University of Technology,Hefei 230009,P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2022年第4期382-391,共10页 Applied Mathematics and Mechanics
基金 安徽省自然科学基金(1808085ME147) 国家级大学生创新创业训练计划(202010363121)。
关键词 应力奇性指数 微分求积法 平面接头 位移特征函数 stress singularity index differential quadrature method plane joint displacement characteristic function
  • 相关文献

参考文献2

二级参考文献25

  • 1张洪武,李云鹏,钟万勰.双材料楔形结合点的奇性分析[J].大连理工大学学报,1995,35(6):776-782. 被引量:11
  • 2Belytschko T,Black T.Elastic crack growth in finite elements with minimal remeshing[J].Int J Numer Meth Engng,1999,45:601-620.
  • 3Moes N,Dolbow J,Belytschko T.A finite element method for crack growth without remeshing[J].Int J Numer Meth Engng,2000,46:131-150.
  • 4Aliabadi M H.Boundary element formulation in fracture mechanics:a review[C] //Computer Aided Assessment and Control of Localized Damage-Proceedings of the International Conference,Localized Damage Ⅳ,1996:3-19.
  • 5Belytschko T.Element-free Galerkin methods for dynamic fracture in concrete[J].Comput Methods Appl Mech Engrg,2000,187:385-399.
  • 6Belytschko T,Krongauz Y.Meshless methods:An overview and recent developments[J].Comput Meth Appl Mech Engrg,1996,139:3-47.
  • 7Dugdale D S.Yielding of steel sheets containing slits[J].J Mech Phys Solids,1960,8:100-104.
  • 8Barrenblatt G I.The mathematical theory of equilibrium of cracks in brittle fracture[J].Adv Appl Mech,1962,7:55-129.
  • 9Hillerborg A,Modeer M,Petersson P.Analysis of crack formation and crack growth in concrete by means of fracturemechanics and finite elements[J].Cement Concrete Res,1976,6:773-782.
  • 10Needleman A.A continuum model for void nucleation by inclusion debonding[J].J Appl Mech,1987,54:525-531.

共引文献8

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部