期刊文献+

突发公共卫生事件国际媒体涉华报道特征及相关因素分析——基于COVID-19数据 被引量:1

Analysis of the Characteristics and Related Factors of International Media Chinarelated Reports on Public Health Emergencies:Based on COVID-19 Data
下载PDF
导出
摘要 深入分析新冠疫情在我国大流行期间国际网络媒体的涉华报道,了解其生成及涌现特征,对我国政府准确研判当前国际舆论环境、有效应对舆情、维护国家形象具有重要现实意义。本研究利用统计分析、情感分类、主题模型等方法,对GDELT全球新冠疫情网络新闻报道数据库的文本进行趋势分析、来源分析和内容分析,采用相关分析探索与各国涉华报道趋势和数量有关的因素,利用层次聚类将报道特征相似的国家聚类,并归纳这些国家的群体特点。研究发现,国际媒体涉华报道主要由美国为首的西方国家主导,报道具有显著不平衡性;美、英两国为涉华负面报道的主要输出国;对华进出口额占一国总进出口比重越大,该国对中国疫情发展趋势关注就越密切;医疗水平较高的国家,其涉华疫情报道占该国所有疫情报道的比重在总体中偏低。通过系统阐释当前突发公共卫生事件中,国际媒体涉华报道的生成特征及涌现特点,为政府有效应对国际舆情提供参考和借鉴。 It is of great significance to analyze the characteristics of China-related reports of international online media during the pandemic of COVID-19 in China,which will help the government accurately study and judge the international public opinion environment,respond effectively,and maintain the image of the country.This paper uses statistical analysis,sentiment classification,and topic models to perform trend analysis,source analysis and content analysis on the text of the GDELT COVID-19 database.Correlation analysis is used to explore factors related to the number of China-related reports in various countries,and hierarchical clustering clusters countries with similar report characteristics.The study found that international media reports on China are mainly dominated by Western countries led by the United States,and the reports are significantly unbalanced;Negative China-related reports are mainly exported by the United Kingdom and the United States;The greater the proportion of import and exports to China in its total import and exports,the more concerned it is about China’s covid-19 epidemic;The countries with higher medical standards,their China-related COVID-19 epidemic reports account for the proportion of all reports in the country,which is lower than the average level.This paper systematically explains the characteristics of China-related reports by international media in current public health emergencies,and provides some references for the government to effectively respond to international public opinion.
作者 陈璟浩 谢献坤 陈美合 Chen Jinghao;Xie Xiankun;Chen Meihe(Research Center of Regional Social Governance and Innovation,Guangxi University,Nanning,530004;Center for the Studies of Information Resources of Wuhan University,Wuhan,430072)
出处 《信息资源管理学报》 CSSCI 2022年第2期76-87,共12页 Journal of Information Resources Management
基金 国家自然科学基金项目“国家安全大数据综合信息集成与分析方法”(71790612) 国家自然科学基金项目“基于数据挖掘的跨区域网络情报智能分析研究——以东盟十国为例”(71663005)阶段性成果之一。
关键词 新冠疫情 突发公共卫生事件 涉华报道 网络舆情 国际媒体 COVID-19 Public health emergencies China-related report Online public opinion International media
  • 相关文献

参考文献10

二级参考文献48

  • 1郭镇之.舆论监督与西方新闻工作者的专业主义[J].国际新闻界,1999,21(5):32-38. 被引量:144
  • 2张威.中西比较:正面报道和负面报道[J].国际新闻界,1999,21(1):49-57. 被引量:113
  • 3张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:98
  • 4孔燕子,盛沛林.论舆论战的几个基本问题[J].南京政治学院学报,2005,21(6):115-119. 被引量:2
  • 5濮端华.论战时舆论动员[J].南京政治学院学报,2006,22(2):109-112. 被引量:8
  • 6Yang Y, Liu X. A Re-examination of Text Categorization Methods [ A]. In SIGIR02 : Pmceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Informa- tion Retrieval[J]. SIGIR: ACld Press, 1999:42-49.
  • 7Li BL, Yu SW,Lu Q. An Improved k-Nearest Neighbor Algo- rithm for Text Categorization [ A ]. In the Proceedings of the 20th International Conference on Computer Processing of Oriental Languages[c].2oo3.
  • 8SongY, Huang J, Zhou D, et 81. IKNN: Infommtive k-nearest Neighbor Pattern Classification[ A]. in: llth European Confer- ence on Principles and Pmeticl,. of Knowledge Discovery in Data- bases[ C ]. Warsaw, Poland ,2J)07 :248 - 264.
  • 9TanSB. Neighbor-weighted K-nearest Neighbor for Unbalanced Text Corpus[ J ]. Expert Systems with Applicatians,2005 ( 28 ) : 667 -671.
  • 10AciM, lnan C,Avci M. A Hybrid Classification Method of k-nearest Neighbor, Bayesian Methods and Genetic Algorithm [ J ]. Expert Systems with Applications,2010( 37 ) :.5061-5067.

共引文献63

同被引文献23

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部