摘要
The quality of perovskite layers has a great impact on the performance of perovskite solar cells(PSCs).However,defects and related trap sites are generated inevitably in the solutionprocessed polycrystalline perovskite films.It is meaningful to reduce and passivate the defect states by incorporating additive into the perovskite layer to improve perovskite crystallization.Here an environmental friendly 2D nanomaterial protonated graphitic carbon nitride(p-g-C_(3)N_(4))was successfully synthesized and doped into perovskite layer of carbon-based PSCs.The addition of p-g-C_(3)N_(4)into perovskite precursor solution not only adjusts nucleation and growth rate of methylammonium lead tri-iodide(MAPb I3)crystal for obtaining flat perovskite surface with larger grain size,but also reduces intrinsic defects of perovskite layer.It is found that thep-g-C_(3)N_(4) locates at the perovskite core,and the active groups-NH_(2)/NH_(3)and NH have a hydrogen bond strengthening,which effectively passivates electron traps and enhances the crystal quality of perovskite.As a result,a higher power conversion efficiency of 6.61% is achieved,compared with that doped with g-C_(3)N_(4)(5.93%)and undoped one(4.48%).This work demonstrates a simple method to modify the perovskite film by doping new modified additives and develops a low-cost preparation for carbon-based PSCs.
基金
supported by the Natural Science Foundation of Liaoning Province(No.20170540086)
the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in Dalian Institute of Chemical Physics,Chinese Academy of Sciences(SKLMRD-K202107,K202216)。