摘要
Magnesium monofluoride(MgF)is proposed as an ideal candidate radical for direct laser cooling.Here,the rotationally resolved laser spectra of MgF for the A^(2)Π-X^(2)∑^(+) electronic transition system were recorded by using laser induced fluorescence technique.The MgF radicals were produced by discharging SF_(6)/Ar gas mixtures between the tips of two magnesium needles in a supersonic jet expansion.We recorded a total of 19 vibrational bands belonging to three sequences of Δv=0,±1 in the region of 348-370 nm.Accurate spectroscopic constants for both X^(2)∑^(+) and A^(2)Π states are determined from rotational analysis of the experimental spectra.Spectroscopic parameters,including the Franck-Condon factors(FCFs),are determined from the experimental results and the Rydberg-Klein-Rees(RKR)calculations.Significant discrepancies between the experimentally measured and RKR-calculated FCFs are found,indicating that the FCFs are nearly independent of the spin-orbit coupling in the A^(2)Π state.Potential energy curves(PECs)and FCFs determined here provide necessary data for the theoretical simulation of the laser-cooling scheme of MgF.
基金
supports from the National Natural Science Foundation of China(No.21773221 and No.21827804)
the National Key R&D Program of China(No.2017YFA0303502)
the Fundamental Research Funds for the Central Universities of China(No.WK2340000078)。