期刊文献+

基于HMM和DT的无人机异常检测方法 被引量:2

Anomaly detection method of UAV based on hidden Markov model and decision tree
下载PDF
导出
摘要 为了实时检测无人机异常状态,提出基于隐马尔可夫模型(Hidden Markov Model,HMM)和决策树(Decision Tree,DT)的无人机异常检测方法(HMMDT)。首先根据异常致因将无人机异常分为干扰异常和硬件异常;然后结合HMM和DT建立无人机异常检测模型,定义无人机异常度衡量异常状态的严重程度,确定其阈值作为异常分类标准;最后用经纬600pro型无人机进行实操验证,该方法异常检测召回率达92.9%,准确率达97.2%;对硬件异常的识别准确率达88.2%。结果表明:与传统异常检测方法相比,该方法在可以满足无人机实时异常检测需要的同时,具有较高的检测准确率和较小的时间复杂度。 In order to detect the UAV anomaly in real time,a UAV anomaly detection method(HMMDT)based on the hidden Markov model(HMM)and decision tree(DT)was proposed.Firstly,the UAV anomaly was divided into interference anomaly and hardware anomaly according to the anomaly causes.Secondly,the UAV anomaly detection model was established by combining HMM and DT,Then the UAV anomaly degree was defined to measure the severity of anomaly state,and its threshold was determined as the anomaly classification standard.Finally,the Jingwei 600Pro UAV was used to verify the method.The recall rate and precision of anomaly detection by the method reached 92.9%and 97.2%respectively,and the recognition accuracy of hardware anomaly reached 88.2%.The results showed that compared with the traditional anomaly detection methods,this method could meet the needs of UAV anomaly detection in real time with higher detection accuracy and smaller time complexity.
作者 张洪海 周锦伦 于文娟 刘皞 钟罡 ZHANG Honghai;ZHOU Jinlun;YU Wenjuan;LIU Hao;ZHONG Gang(College of Civil Aviation,Nanjing University of Aeronautics & Astronautics,Nanjing Jiangsu 211106,China)
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2022年第3期193-198,共6页 Journal of Safety Science and Technology
基金 国家自然科学基金项目(71971114) 南京航空航天大学研究生创新基地(实验室)开放基金项目(kfjj20200716)。
关键词 无人机 异常检测 隐马尔可夫模型 监督学习 决策树 unmanned aerial vehicle(UAV) anomaly detection hidden Markov model(HMM) supervised learning decision tree(DT)
  • 相关文献

参考文献5

二级参考文献39

  • 1QI x, THEILLIOL D, QI J, et al. A literature review on fault diagnosis methods for manned and unmanned helicopters[ C]. 2013 IEEE International Conference on Unmanned Aircraft Systems, 2013: 1114-1118.
  • 2ALJANAIDEH K F, BERNESTEIN D S. Aircraft sensor health monitoring based on transmissibility operators[ J ]. Journal of Guidance, Control, and Dynamics, 2015, 38(8) : 1492-1495.
  • 3CHAMSEDDINE A, AMOOZGAR M H, ZHANG Y M. Experimental validation of fault detection and diagnosis for unmanned aerial vehicles [ C ]. Handbook of Unmanned Aerial Vehicles. Berlin : Springer Netherlands, 2015 : 1123-1155.
  • 4FREEMAN P, PANDITA R, SRIVASTAVA N, et al. Model-based and data-driven fault detection performance for a small UAV [ J ]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4) : 1300-1309.
  • 5CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: A survey[ J]. ACM computing surveys, 2009, 41(3) : 1-58.
  • 6PAN D W, LIU D T, ZHOU J, et al. Anomaly detection for satellite power subsystem with associated rules based on Kernel principal component analysis [ J ]. Microelectronics Reliability, 2015, 55 ( 9 ) : 2082-2086.
  • 7SCHUMANN J M, ROZIER K Y, REINBACHER T, et al. Towards real-time, on-board, hardware-supported sensor and software health management for unmanned aerial systems [ J ]. International Journal of Prognostics and Health Management, 2015, 6( 1 ) ) : 1-27.
  • 8KHALASTCHI E, KALECH M, KAMINKA G A, et al. Online data-driven anomaly detection in autonomous robots[ J]. Knowledge and Information Systems, 2015, 43 ( 3 ) : 657-688.
  • 9FREEMAN P, BALAS G J. Analytical fault detection for a small UAV[ C]. A1AA Infoteeh Aerospace Conference, 2013 : 541-546.
  • 10HANSEN S, BLANKE M, ADRIAN J. Diagnosis of UAV pitot tube defects using statistical change detection [ C ]. Proceedings of the 7th IFAC Symposium on Intelligent Autonomous Vehicles, Lecce, Italy,2010.

共引文献74

同被引文献34

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部