摘要
借鉴基于正则回归的无监督并行正交基聚类特征选择法和最大互信息系数,提出正交基低冗余无监督特征选择法.该方法在正交基下选择具有判别能力的特征,可用最大互信息系数矩阵选择低冗余性的特征子集.4个图像数据集上的实验结果表明:该方法选择的特征子集可以提高聚类准确率.
Based on unsupervised simultaneous orthogonal basis clustering feature selection(SOCFS)and maximum mutual information coefficient(MIC),an orthogonal basis minimization redundancy unsupervised feature selection method(OBMRFS)is proposed.The method selects features with discriminant ability under orthogonal basis and uses maximum mutual information coefficient matrix to select the feature subset with minimization redundancy.The experimental results on four image datasets show that the feature subset selected by the proposed method can improve the clustering accuracy.
作者
简彩仁
翁谦
JIAN Cairen;WENG Qian(Tan Kah Kee College,Xiamen University,Zhangzhou,Fujian 363105,China;College of Computer and Data Science,Fuzhou University,Fuzhou,Fujian 350108,China)
出处
《福州大学学报(自然科学版)》
CAS
北大核心
2022年第1期1-8,共8页
Journal of Fuzhou University(Natural Science Edition)
基金
国家自然科学青年基金资助项目(41801324)
福建省自然科学基金资助项目(2019J01244)
福建省中青年教师教育科研资助项目(JAT210631)。
关键词
正交基
低冗余
无监督
特征选择
聚类
orthogonal basis
minimization redundancy
unsupervised
feature selection
clustering