期刊文献+

基于多新息CDKF算法的锂电池SOC估计 被引量:3

SOC estimation for lithium-ion batteries based on multi-innovation central difference Kalman filter algorithm
下载PDF
导出
摘要 锂电池荷电状态(SOC)作为电池管理系统的核心指标之一,对电池管理系统运行起到至关重要的作用,其估计性能和鲁棒性是研究的重点。为提升SOC估计性能,建立二阶RC等效电路模型,将多新息理论(MI)与中心差分卡尔曼滤波算法(CDKF)结合,提出一种基于多新息的中心差分卡尔曼滤波算法(MI-CDKF),充分考虑当前时刻新息与历史信息。仿真结果表明,所提MI-CDKF与传统方法相比,在收敛速度和估计精度上均有所提升,同时对传感器漂移现象具有一定鲁棒性。 As one of the core indicators of battery management system,the state of charge(SOC)of lithium batteries plays a vital role in the operation of battery management system.Its estimation performance and robustness are the focus of research.To promote SOC estimation performance,a second-order RC equivalent circuit model was established.By combining the multi-innovation theory(MI)with the central difference Kalman filter,a new central difference Kalman filter(MI-CDKF)algorithm based on the multi-innovation theory(MI)was proposed,which fully considered the current innovation and the historical information.The simulation results show that compared with the traditional methods,the proposed MI-CDKF has improved convergence speed and estimation accuracy.In the meanwhile,it also has certain robustness against sensor drift phenomenon.
作者 达杨阳 万佑红 张帅帅 DAYangyang;WAN Youhong;ZHANG Shuaishuai(College of Automation&College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing Jiangsu 210023,China)
出处 《电源技术》 CAS 北大核心 2022年第4期390-394,共5页 Chinese Journal of Power Sources
关键词 锂电池 荷电状态(SOC) 多新息 中心差分卡尔曼 lithium battery state of charge(SOC) multi-innovation central difference Kalman filter
  • 相关文献

参考文献2

二级参考文献13

共引文献8

同被引文献24

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部