期刊文献+

Customizing the microenvironment of CO_(2) electrocatalysis via three‐phase interface engineering 被引量:2

原文传递
导出
摘要 Converting CO_(2) into high‐value fuels and chemicals by renewable‐electricitypowered electrochemical CO_(2) reduction reaction(CRR)is a viable approach toward carbon‐emissions‐neutral processes.Unlike the thermocatalytic hydrogenation of CO_(2) at the solid‐gas interface,the CRR takes place at the three‐phase gas/solid/liquid interface near the electrode surface in aqueous solution,which leads to major challenges including the limited mass diffusion of CO_(2) reactant,competitive hydrogen evolution reaction,and poor product selectivity.Here we critically examine the various methods of surface and interface engineering of the electrocatalysts to optimize the microenvironment for CRR,which can address the above issues.The effective modification strategies for the gas transport,electrolyte composition,controlling intermediate states,and catalyst engineering are discussed.The key emphasis is made on the diverse atomic‐precision modifications to increase the local CO_(2) concentration,lower the energy barriers for CO_(2) activation,decrease the H2O coverage,and stabilize intermediates to effectively control the catalytic activity and selectivity.The perspectives on the challenges and outlook for the future applications of three‐phase interface engineering for CRR and other gasinvolving electrocatalytic reactions conclude the article.
出处 《SmartMat》 2022年第1期111-129,共19页 智能材料(英文)
基金 Australian Research Council,Grant/Award Numbers:FL170100154,FT200100062,DP220102596,DP210100472,DP190103472。
  • 相关文献

参考文献1

同被引文献37

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部