期刊文献+

A dual-gelling poly(N-isopropylacrylamide)-based ink and thermoreversible poloxamer support bath for high-resolution bioprinting 被引量:1

原文传递
导出
摘要 Extrusion bioprinting is a popular method for fabricating tissue engineering scaffolds because of its potential to rapidly produce complex,bioactive or cell-laden scaffolds.However,due to the relatively high viscosity required to maintain shape fidelity during printing,many extrusion-based inks lack the ability to achieve precise structures at scales lower than hundreds of micrometers.In this work,we present a novel poly(N-isopropylacrylamide)(PNIPAAm)-based ink and poloxamer support bath system that produces precise,multi-layered structures on the tens of micrometers scale.The support bath maintains the structure of the ink in a hydrated,heated environment ideal for cell culture,while the ink undergoes rapid thermogelation followed by a spontaneous covalent crosslinking reaction.Through the combination of the PNIPAAm-based ink and poloxamer bath,this system was able to produce hydrogel scaffolds with uniform fibers possessing diameters tunable from 80 to 200μm.A framework of relationships between several important printing factors involved in maintaining support and thermogelation was also elucidated.As a whole,this work demonstrates the ability to produce precise,acellular and cell-laden PNIPAAm-based scaffolds at high-resolution and contributes to the growing body of research surrounding the printability of extrusion-based bioinks with support baths.
出处 《Bioactive Materials》 SCIE 2022年第8期302-312,共11页 生物活性材料(英文)
基金 the National Institutes of Health(P41 EB023833) the National Science Foundation Graduate Research Fellowship Program(A.M.N.)for financial support supported by a Rubicon postdoctoral fellowship from the Dutch Research Council(NWO,Project No.019.182 EN.004).
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部