摘要
深蹲被称为力量训练之王,但不正确的姿势会对人体产生不可逆转的伤害。提出了一种利用足底压力来检测常见不正确的蹲姿的方法。使用带8个压力传感器的鞋垫收集了1组正确蹲姿和4组常见错误蹲姿的数据,提出了对这些连续蹲姿数据进行分割的算法,并对压力云图进行了分析。然后设计了3组深度神经网络作为分类器,分别是引入注意力机制的长短期记忆网络(att-LSTM)、长短期记忆网络(LSTM)和卷积神经网络(CNN)。实验结果表明,3组模型的测试准确率分别为90.2%、83.0%和79.8%。结果表明,采用引入注意力机制的LSTM作为分类算法是一种有效的蹲姿检测方法。
Squat is known as the king of strength trainings.However,the incorrect positions may produce irreversible damage to the human body.This study proposes a method utilizing plantar pressure to detect common incorrect squats position.Insoles with eight pressure sensors are utilized to collected 5 sets of database,which are correct squat and 4 common incorrect squats.An algorithm is proposed to segment those continuous pressure data.Then,the pressure nephogram is also analyzed.Three sets of deep neural network are designed as classifiers,which are Att-LSTM,LSTM,and CNN,respectively.Experimental results show that accuracies of these models are 90.2%,83.0%and 79.8%,respectively.The results suggest that the utilization of sensor insoles with LSTM and attention mechanism as the classification algorithm is a valid method to detect squats position.
作者
周丙涛
向勉
汪涛
陈世强
金浩
Zhou Bingtao;Xiang Mian;Wang Tao;Chen Shiqiang;Jin Hao(School of Advanced Materials and Mechatronic Engineering,Hubei Minzu University,Enshi 445000,China)
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021年第12期110-117,共8页
Chinese Journal of Scientific Instrument
基金
恩施州科技计划项目(2019001062)
湖北民族大学高水平科研成果校内培育项目(PY21022)
2021年大学生创新创业训练计划项目(X202110517262)
超轻弹性体材料绿色制造重点实验室2021年度开放基金项目(PT092107)
超轻弹性体材料绿色制造重点实验室2020年度开放基金项目(PT092009)资助。