期刊文献+

Magnesium cationic cue enriched interfacial tissue microenvironment nurtures the osseointegration of gamma-irradiated allograft bone

原文传递
导出
摘要 Regardless of the advancement of synthetic bone substitutes,allograft-derived bone substitutes still dominate in the orthopaedic circle in the treatments of bone diseases.Nevertheless,the stringent devitalization process jeopardizes their osseointegration with host bone and therefore prone to long-term failure.Hence,improving osseointegration and transplantation efficiency remains important.The alteration of bone tissue microenvironment(TME)to facilitate osseointegration has been generally recognized.However,the concept of exerting metal ionic cue in bone TME without compromising the mechanical properties of bone allograft is challenging.To address this concern,an interfacial tissue microenvironment with magnesium cationc cue was tailored onto the gamma-irradiated allograft bone using a customized magnesium-plasma surface treatment.The formation of the Mg cationic cue enriched interfacial tissue microenvironment on allograft bone was verified by the scanning ion-selective electrode technique.The cellular activities of human TERT-immortalized mesenchymal stem cells on the Mg-enriched grafts were notably upregulated.In the animal test,superior osseointegration between Mg-enriched graft and host bone was found,whereas poor integration was observed in the gamma-irradiated controls at 28 days post-operation.Furthermore,the bony in-growth appeared on magnesium-enriched allograft bone was significant higher.The mechanism possibly correlates to the up-regulation of integrin receptors in mesenchymal stem cells under modified bone TME that directly orchestrate the initial cell attachment and osteogenic differentiation of mesenchymal stem cells.Lastly,our findings demonstrate the significance of magnesium cation modified bone allograft that can potentially translate to various orthopaedic procedures requiring bone augmentation.
出处 《Bioactive Materials》 SCIE 2022年第4期32-47,共16页 生物活性材料(英文)
基金 supported by the National Natural Science Foundation of China(NSFC)(Nos.81902189,81772354,82002303,31570980) Clinical Innovation Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory(2018GZR0201001) National Key Research and Development Plan(2018YFC1105103) Research Grant Council General Research Funds(RGC GRF)(17214516) Shenzhen Science and Technology Innovation Funding(JCYJ20160429190821781 and JCYJ2016429185449249) Science Technology Project of Guangzhou City(201804010185) Science and Technology Innovation Project of Foshan City(1920001000025) Scientific Research Foundation of PEKING UNIVERSITY SHENZHEN HOSPITAL KYQD(2021064) National Young Thousand-Talent Scheme to Zhang Zhi-Yong.
  • 相关文献

参考文献2

二级参考文献5

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部