期刊文献+

防冰材料研究进展及其在风电领域的应用 被引量:3

Research Progress of Anti-Icing Materials and Its Application Prospects in Wind Power
原文传递
导出
摘要 新型防冰材料在风力发电领域具有非常广泛的应用前景。风机叶片表面的覆冰现象通常与冰的成核和冰生长两个因素息息相关。本文总结了本课题组在防冰材料方面的研究进展,包括抑制冰成核、防止冰生长、降低冰粘附力以及在低温与高湿等极端环境下具有光热除冰性能的防冰涂层。防冰材料技术的进步势必极大促进风电行业的发展,对我国的经济转型和能源结构调整具有重要意义。 New anti-ice materials have a wide range of applications in the field of wind power. Icing on the surface of wind turbine blade is usually related to the nucleation and growth of ice. This paper briefly summarizes the research progress of our research group in the field of anti-ice materials, including inhibition of ice nucleation, prevention of ice crystal growth, reduction of ice adhesion force, and preparation of anti-ice materials with different functions in combination with light and heat under high humidity and ultra-low temperature conditions. The progress of anti-ice material technology will greatly promote the development of anti-icing in wind power industry, which is of great significance to China’s economic transformation and energy structure adjustment.
作者 梁镇宇 朱志成 韩毅平 李存义 龚伟 李嘉鑫 王占辉 张宏强 贺志远 王健君 Liang Zhenyu;Zhu Zhicheng;Han Yiping;Li Cunyi;Gong Wei;Li Jiaxin;Wang Zhanhui;Zhang Hongqiang;He Zhiyuan;Wang Jianjun(Institute of Chemistry,Chinese Academy of Sciences,Beijing,100190;Zhongneng Power-Tech Development Co.,Ltd,Beijing,100034;School of Mechanical Engineering&Automation-BUAA,Beijing University of Aeronautics and Astronautics,Beijing,100191)
出处 《化学通报》 CAS CSCD 北大核心 2022年第4期386-400,共15页 Chemistry
基金 国家重点研发计划国际合作项目(2020YFE0100300) 国家自然科学基金项目(21733010,21875261) 中国科学院青年促进会项目(2018044)资助。
关键词 防冰 冰成核 冰传递 冰粘附 风电 Anti-icing Ice nucleation Ice propagation Ice adhesion Wind power
  • 相关文献

参考文献5

二级参考文献30

  • 1裴敬龙.浅谈磷酸铁锂动力电池特点及应用[J].新疆有色金属,2012,35(S1):106-107. 被引量:2
  • 2FORTIN G and PERRON J. Wind turbine icing and de-icing [ R]. AIAA 2009 -274, 2009.
  • 3MATI'HEW C HOMOI,A, MUHAMMAD S VIRK, TOMAS WALLENIUS, etc. Effect of atmospheric temperature and droplet size variation on ice accretion of wind turbine blades [J]. Wind Energy, 2010, 98(12) :724 -729.
  • 4HOMOLA M C, WALLENIUS T, MAKKONEN L, NICK- LASSON P, SUNDSBo P A. The relationship between chord length and rime icing on wind turbines [ J ]. Wind Energy, 2010,13(7) :627 -632.
  • 5VIRK M S, HOMOLA M C, NICKLASSON P J. Effect of rime ice accretion on aerodynamic characteristics of wind tur- bine blade profiles [ J ]. Wind Engineering , 2010,34 (2) : 207 -218.
  • 6DUNCAN T, LEBLANC M, MORGAN C, LANDBERG L.Understanding icing losses and risk of ice throw at operating wind farms[J]. Winterwind,2008,31(2) :263 -270.
  • 7CHUNG, JAMES, BEEHORST, ANDREW, CHOO, YUNG, POTAPCZUK, MARK and SLATER, JOHN. Navier-Stokes a- nalysis of flowfield characteristics of an ice-contaminated air- craft wing[R]. AIAA-1999 -0375.
  • 8SHIM, JEONGHWAN, CHUNG, JUNE, and LEE, KI D.A comparison of turbulence modeling in flow analysis of iced airfoils[ R]. AIAA 2000 - 3920, January 2000.
  • 9RICHARD E KREEGER, WILLIAM B WRIGHT. The influ- ence of viscous effects on ice accretion prediction and airfoil performance predictions[ R]. AIAA -2005 - 1373.
  • 10GARY A RUFF and BRIAN M BERKOWITZ. Users manual for the NASA Lewis ice accretion prediction code (LEWICE) [R]. NASA CR -185129, May 1990.

共引文献84

同被引文献22

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部