期刊文献+

基于自适应模糊扩展卡尔曼滤波的车辆运动状态联合估计 被引量:2

Joint Estimation of Vehicle Motion State Based on Adaptive Fuzzy Extended Kalman Filter
下载PDF
导出
摘要 为准确实时地获取车辆运动状态信息,满足车辆主动安全控制系统的需求,基于模糊控制器和扩展卡尔曼滤波(EKF)算法,采用非线性3自由度车辆动力学模型,提出一种基于自适应模糊扩展卡尔曼滤波(AFEKF)的车辆运动状态联合估计策略。首先利用EKF算法对待测量噪声的输入量联合估计得到所需的状态量,然后建立模糊控制器对其进行自适应调节,最后应用MATLAB/Simulink仿真平台建立14自由度车辆动力学模型对估计算法进行仿真和实车试验验证。结果表明:AFEKF算法能够准确有效地估计车辆的行驶状态,且与EKF算法相比,准确性和鲁棒性更好。 In order to accurately obtain vehicle motion status information in real time and meet the requirements of active safety control system, this paper proposes a strategy for joint estimation of vehicle dynamic state based on Adaptive Fuzzy Extended Kalman Filter (AFEKF). The estimation strategy uses a nonlinear 3-degree-of-freedom vehicle dynamic model, and based on fuzzy controller and Extended Kalman Filter (EKF) algorithm. Firstly, the EKF algorithm is used to jointly estimate the required state quantity for the input quantity with measurement noise. Secondly, a fuzzy controller is established to adaptively adjust EKF. Finally, MATLAB/Simulink simulation platform is used to establish a 14-degree-offreedom vehicle dynamics model to verify the estimation algorithm with simulation and real vehicle test. The experimental results show that the AFEKF algorithm can accurately and effectively estimate the driving state of the vehicle, and compared with the EKF algorithm, AFEKF algorithm has better accuracy and robustness.
作者 刘明春 彭志波 吴晓建 Liu Mingchun;Peng Zhibo;Wu Xiaojian(Nanchang University,Nanchang 330031;Higer Bus Co.,Ltd.,Suzhou 215000)
出处 《汽车技术》 CSCD 北大核心 2022年第4期23-30,共8页 Automobile Technology
基金 国家自然科学基金项目(52062036)。
关键词 车辆状态估计 扩展卡尔曼滤波 模糊控制 联合估计 车辆动力学模型 Vehicle state estimation Extended Kalman Filter(EKF) Fuzzy control Joint estimation Vehicle dynamics model
  • 相关文献

参考文献5

二级参考文献39

  • 1周宇奎,谷正气,王和毅.汽车主动四轮转向系统的解耦自适应控制研究[J].机械与电子,2004,22(10):11-14. 被引量:6
  • 2卞鸿巍,金志华,王俊璞,田蔚风.组合导航系统新息自适应卡尔曼滤波算法[J].上海交通大学学报,2006,40(6):1000-1003. 被引量:55
  • 3胡丹.基于双扩展卡尔曼滤波的汽车状态及路面附着系数估计算法研究[D].长春:吉林大学,2009.
  • 4Furukawa Y,Yuhara N,Sano S. A Review of Four-wheelsteering Studies from the Viewpoint of Vehicle Dynamics and Control[J].Vehicle Systym Dynamics,1989,(18):151-186.
  • 5洪嘉振;贾书惠.多体系统动力学与控制[M]北京:北京理工大学出版社,1996.
  • 6Haug E J. Computer Aided Kinematics and Dynamics of Mechanical Systems,Vol.Ⅰ:Basic Methods[M].Allyn and Bacon,Inc,1989.
  • 7Romanenko A, Castro J. The Unscented Filter as an Alternative tothe EKF for Nonlinear State Estimation : a Simulation Case Study[J]. Computers and Chemical Engineering,2004 , 28 ( 3 ) : 347 -355.
  • 8Al-Dhaher A H G, Mackesy D. Multi-sensor Data Fusion Architec-ture [ C]. The 3rd IEEE International Workshop on Haptic, Audioand Visual Environments and Their Applications, Ottawa, Ontario,Canada,2004 :159-163.
  • 9Mosallaei M,Salahshoor K, Bayat M. Centralized and Decentral-ized Process and Sensor Fault Monitoring Using Data Fusion Basedon Adaptive Extended Kalman Filter Algorithm[ J]. Measurement,2008,2(41) :1059-1076.
  • 10Hide C, Moore T, Smith M. Adaptive Kalman Filtering Algorithmsfor Integrating GPS and Low Cost INS[ C]. 2004 Position Locationand Navigation Symposium, IEEE Aerospace and Electronic Sys-tems Society, Monterey, Califorlia,2004:227-233.

共引文献64

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部