期刊文献+

基于遗传算法的二次供水低位水箱调度方案优化 被引量:4

Optimization of Scheduling Solution for Low-Level Water Tank in Secondary Water Supply System Based on Genetic Algorithm
下载PDF
导出
摘要 低位水箱是目前二次供水改造的主要方式之一。但在建设与运行管理过程中,普遍存在水箱调蓄作用未被充分利用的问题。针对此问题,研究以低位水箱对市政供水管网的调蓄效果最优,即以二级泵站出水波动强度最小为目标,建立调度优化模型,通过遗传算法进行求解,寻找二次供水低位水箱与供水管网的联合优化调度的最佳方案。将该模型应用于SZ市管网中,通过优化前后的二级泵房出水压力、流量的波动强度与供水管网理论能耗值对比,证明了通过优化二次供水水箱调度方案实现“削峰填谷”和节能降耗的可行性。 The low-level water tank is one of the main ways of secondary water supply reconstruction at present.However,in the process of construction and operation management,there is a common problem that the regulation function of water tank is not fully utilized.Aiming at this problem,the optimal regulation effect of low-level water tank on the municipal water supply network,namely,the minimum fluctuation intensity of the outlet water of secondary pumping station was taken as the goal,and the optimal regulation model was established and solved by genetic algorithm.The optimal scheme of joint optimal operation of low-level water tank and water distribution system for secondary water supply was found.This model was applied to pipeline network in SZ City.By comparing the fluctuation intensity of outlet pressure and flow rate of the second pump house before and after optimization with the theoretical energy consumption values of water supply pipe network,the feasibility of“peak load shifting”and energy saving and consumption reduction by optimizing the dispatching scheme of secondary water supply tank is proved.
作者 高雨妃 周立典 张雪 夏星宇 赵平伟 信昆仑 GAO Yufei;ZHOU Lidian;ZHANG Xue;XIA Xingyu;ZHAO Pingwei;XIN Kunlun(College of Environmental Science and Engineering,Tongji University,Shanghai200092,China;Suzhou Water Conservancy Co.,Ltd.,Suzhou215000,China;Shanghai Chengtou Water<Group>Co.,Ltd.,Shanghai200431,China)
出处 《净水技术》 CAS 2022年第4期121-125,共5页 Water Purification Technology
基金 水污染控制与治理国家科技重大专项(2017ZX07201001) 上海城投科研项目:青东地区供水管网智能调度技术研究与示范应用(CTKY-ZDXM-2020-012) 国家自然科学基金(51978494)。
关键词 二次供水 水箱 调度优化 削峰填谷 遗传算法 secondary water supply water tank optimization of scheduling peak load shifting genetic algorithm
  • 相关文献

参考文献5

二级参考文献25

共引文献14

同被引文献17

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部