摘要
为有效管控大停电风险,准确辨识诱发电力系统连锁故障的关键线路是非常有必要的。为此,本文基于社交网络影响力分析提出一种电力系统连锁故障的关键线路辨识方法。首先,采用连锁故障的样本数据,构建描述故障传播特性的社交网络;然后,建立连锁故障传播过程中的线路影响力量化方法,计及不同线路影响力的重叠性,通过最大化关键线路集合的故障传播影响,识别传播连锁故障的重要线路元件;最后,基于省级电网验证了所提方法的有效性。
To effectively manage the blackout risk,it is necessary to identify critical branches that induce the cascading failures of the power system.In this context,a method to identify critical branches based on the influence analysis of social network is proposed.First,the social network is constructed with the samples of cascadings failure to capture its propagation patterns.Then,the influence of branch outages on the propagation of cascading failures is quantified.The total influence of critical branch set is maximized with the consideration of the overlap between the influence of branches,which can effectively identify the representative branch in the cascading failure propagation.Finally,the validity of the proposed method is verified on a provincial power grid.
作者
郭琦
郝乾鹏
刘军
孟凡成
胡博
薛艳军
GUO Qi;HAO Qian-peng;LIU Jun;MENG Fan-cheng;HU Bo;XUE Yan-jun(Branch of Power Dispatching Control,Inner Mongolia Power(Group)Co.,Ltd.,Hohhot 010020,China;State Key Laboratory of Power Transmission Equipment&System Security and New Technology(Chongqing University),Chongqing 400044,China;Beijing QU Creative Technology Co.,Ltd.,Beijing 100084,China)
出处
《电工电能新技术》
CSCD
北大核心
2022年第4期34-41,共8页
Advanced Technology of Electrical Engineering and Energy
基金
内蒙古电力(集团)有限责任公司科技项目(YS-2011-DL)。
关键词
社交网络
最大影响力
连锁故障
关键线路
social network
influence maximization
cascading failure
critical branch