期刊文献+

基于门控神经网络的储能电站荷电状态估计研究 被引量:3

Storage battery SOC estimation based on gated recurrent unit neural network and dropout
下载PDF
导出
摘要 电站荷电状态(SOC)估算是电池管理系统中重要的功能之一,同时SOC也是保障储能电站正常运行和安全的重要参数。对于储能电站,SOC的准确估计能防止电池的过充或过放,延长电池使用寿命,准确估算SOC也是当前的难点。本文提出使用门控神经网络(GRU)结合Dropout正则化算法估算SOC,实现电池SOC的准确估计与良好泛化能力。GRU网络用来学习电压、电流测量值与SOC的非线性关系。训练时,Dropout将隐藏层中的所有神经元以一定的概率随机置为0,避免对隐藏层中任一节点产生依赖,防止过拟合,从而增加模型的泛化能力。实验结果显示,本文提出的方法可实现SOC准确估计,最优结果为平均绝对误差1.38%,均方根误差1.66%。 SOC estimation is one of the most important functions in battery management system and it is also an important parameter to ensure the normal operation and safety of energy storage power station.For energy storage stations,accurate estimation of SOC can prevent battery overcharge or overdischarge,thus prolonging battery life,and it is also the difficult point to be solved.In this paper,the GRU neural network combined with Dropout regularization algorithm is proposed to estimate the SOC,so as to realize the accurate estimation and great generalization ability.The GRU network is used to learn the nonlinear relationship between the voltage,current and SOC.During training,dropout randomly sets all neurons in the hidden layer to 0 with a certain probability to avoid dependence on any unit in the hidden layer and prevent overfitting,thus increasing the generalization ability of the model.The results show that the method proposed in this paper can achieve accurate SOC estimation with the optimal result of MAE of 1.38%and RMSE of 1.66%.
作者 宋洁 赵雪莹 朱玉婷 梁丹曦 徐桂芝 邓占锋 SONG Jie;ZHAO Xue-ying;ZHU Yu-ting;LIANG Dan-xi;XU Gui-zhi;DENG Zhan-feng(Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China;Department of Electrical Engineering, Tsinghua University, Beijing 100084,China)
出处 《电工电能新技术》 CSCD 北大核心 2022年第4期82-88,共7页 Advanced Technology of Electrical Engineering and Energy
基金 国家电网公司科技项目(2018-2020-SGGR0000DLJS1801307)。
关键词 储能电站 门控神经网络 荷电状态 神经网络学习 energy storage station gated recurrent neural unit state of charge neural network learning
  • 相关文献

参考文献3

二级参考文献41

  • 1吴红杰,齐铂金,郑敏信,陈波,舒伟辉.混合动力电动车电池荷电状态描述方法[J].北京航空航天大学学报,2005,31(2):223-226. 被引量:3
  • 2杨廷方,刘沛,李景禄,胡毅.FCM结合IEC三比值法诊断变压器故障[J].高电压技术,2007,33(8):66-70. 被引量:39
  • 3Lu R G, Wu G L,Ma R, et al. Model based state of charge estimation method for ultra-capacitor[C]. Proceedings of the IEEE Vehicle Power and Propulsion Conference, 2008:1-4.
  • 4Rodrigues S, Munichandraiah N, Shukla A K. A review of state-of-charge indication of batteries by means of AC impedance measurements[J]. Journal of Power Sources, 2000, 87(1): 12-20.
  • 5Huet F. A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries[J]. Journal of Power Sources, 1998, 70 (1): 59-69.
  • 6Ehret C, Piller S, Schroer W. State-of-charge determination for lead-acid batteries in PV-applications[C]. Proceedings of the European Photovoltaic Solar Energy Conference, 2000: 1-4.
  • 7Tsutomu Y, Kazuaki S, Ken ichiro M. Estimation of the residual capacity of sealed lead-acid batteries by neural network[C]. Proceedings of the Telecommunications Energy Conference, 1998: 210-214.
  • 8Gregory L P. Kalman-filter SOC estimation for LIB cells[C]. Proceedings of the International Electric Vehicle Symposium, 2002: 1-4.
  • 9Sabine P, Marion P, Andreas J. Methods for state-of- charge determination and their applications[J]. Journal of Power Sources, 2001, 96(1): 113-120.
  • 10Wu G L, Lu R G, Zhu C B, et al. State of charge estimation for NiMH battery based on electromotive force method[C].Proceedings of the IEEE Vehicle Power and Propulsion Conference, 2008:1-4.

共引文献73

同被引文献31

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部