摘要
压载水系统是船舶系统的重要组成部分,冰区航行或作业船舶压载舱的防冻直接影响船舶吃水调整和结构安全。以某起重船为研究对象,建立压载舱的三维模型,基于CFD仿真软件STAR-CCM+研究压缩空气吹泡压载舱防冻,并对比分析管路布置和气源温度对防冻效果的影响,结果发现:吹泡口的位置对防冻效果的影响较大,靠近舷侧布置时压载水温度降至冰点温度的时间相对较长;气源温度升高后可有效改善船舶压载舱的防冻效果。
Ballast water system is an important part of ship system. Anti-freezing of ballast tanks of ships in ice area directly affects draught adjustment and structural safety of ships. In this paper, a crane ship is taken as research object, and a three-dimensional model of ballast tank is established. Based on the CFD simulation software STAR-CCM+, the anti-freezing effect of compressed air blowing ballast tank is studied, and the influence of pipeline layout and air source temperature on the anti-freezing effect is compared and analyzed. The results show that the position of the blowing mouth has a great influence on the anti-freezing effect, and the time for the ballast tank water temperature to drop to freezing point is relatively long when the blowing mouth is arranged near the side of the ship;When the air source temperature increase, the anti-freezing effect of ballast tank can be effectively improved.
作者
刘中胜
陈兆锡
胡坚
LIU Zhong-sheng;CHEN Zhao-xi;HU Jian(Shanghai Merchant Ship Design&Reseatch Insiiiuie,Shanghai 201203,China;Donghai Rescue Bureau of The Minista of Transport,Shanghai 200082,China)
出处
《能源工程》
2022年第2期17-22,共6页
Energy Engineering
关键词
冰区
船舶
压载舱
压缩空气
防冻
ice area
ship
ballast tank
compressed air
anti-freezing