期刊文献+

A Robust Modified Weak Galerkin Finite Element Method for Reaction-Diffusion Equations

原文传递
导出
摘要 In this paper,a robust modified weak Galerkin(MWG)finite element method for reaction-diffusion equations is proposed and investigated.An advantage of this method is that it can deal with the singularly perturbed reaction-diffusion equations.Another advantage of this method is that it produces fewer degrees of freedom than the traditional WG method by eliminating the element boundaries freedom.It is worth pointing out that,in our method,the test functions space is the same as the finite element space,which is helpful for the error analysis.Optimalorder error estimates are established for the corresponding numerical approximation in various norms.Some numerical results are reported to confirm the theory.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2022年第1期68-90,共23页 高等学校计算数学学报(英文版)
基金 supported by the State Key Program of National Natural Science Foundation of China(Grant 11931003) the National Natural Science Foundation of China(Grants 41974133,11971410) the Natural Science Foundation of Lingnan Normal University(Grant ZL2038).
  • 相关文献

参考文献2

二级参考文献1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部