期刊文献+

The Conservation and Convergence of Two Finite Difference Schemes for KdV Equations with Initial and Boundary Value Conditions 被引量:3

原文传递
导出
摘要 Korteweg-de Vries equation is a nonlinear evolutionary partial differential equation that is of third order in space.For the approximation to this equation with the initial and boundary value conditions using the finite difference method,the difficulty is how to construct matched finite difference schemes at all the inner grid points.In this paper,two finite difference schemes are constructed for the problem.The accuracy is second-order in time and first-order in space.The first scheme is a two-level nonlinear implicit finite difference scheme and the second one is a three-level linearized finite difference scheme.The Browder fixed point theorem is used to prove the existence of the nonlinear implicit finite difference scheme.The con-servation,boundedness,stability,convergence of these schemes are discussed and analyzed by the energy method together with other techniques.The two-level non-linear finite difference scheme is proved to be unconditionally convergent and the three-level linearized one is proved to be conditionally convergent.Some numerical examples illustrate the efficiency of the proposed finite difference schemes.
机构地区 School of Mathematics
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2020年第1期253-280,共28页 高等学校计算数学学报(英文版)
基金 The project is supported by National Natural Science Foundation of China grant number No.11671081.
  • 相关文献

参考文献1

二级参考文献13

  • 1Zabusky N J,Kruskal M D. Interaction of "solitions" in a collisionless plasma and the recurrence of initial states[J].Physical Rev Lett, 1965,15(6) :240-243.
  • 2Osborne A R. Nonlinear fourier analysis for the infinite-interval Korteweg-de Vries equation Ⅰ :An algorithm for direct scattering transform[J]. J Comput Phys, 1991,94(2) :284-313.
  • 3Djidjeli K, Price W G, Twizell E H, et al. Numerical methods for the solution of the third-and fifthorder dispersive Korteweg-de Vries equations[ J]. J Comput Appl Math, 1995,58(3):307-336.
  • 4FENG Bao-feng, Taketomo Mitsui. A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations[ J]. J Comput Appl Math, 1998,90( 1 ):95-116.
  • 5Evans D J, Abdullah A R B. Group explicit methods for parabolic equations[ J]. Intern J Comput Math, 1983,14( 1 ) : 73-105.
  • 6ZHANG Bao-lin, LI Wen-zhi. On alternating segment Crank-Nicolson scheme[J]. Parallel Computing, 1994,20(5) :897-902.
  • 7YUAN Guang-wei, SHEN Long-jun, ZHOU Yu-lin. Unconditional stability of alternating difference schemes with intrinsic parallelism for two-dimensional parabolic systems[J].Inc Numer Methods Partial Di ffential Eq , 1999,15(6) :25-636.
  • 8ZHU Shao-hong,Zhao J. The alternating segment explicit-implicit method for the dispersive equation [J]. Applied Mathematics Letters ,2001,14(6) :657-662.
  • 9Kellogg R B.An alternating direction method for operator equations[J].J Soc Indust Appl Math, 1964,12(4) : 848-854.
  • 10LI Ping-wah. On the numerical study of the KdV equation by the semi-implicit and leaap-frog method [ J]. Computer Physics Communications,1995,88(2/3):121-127.

共引文献14

同被引文献7

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部