期刊文献+

铜基SAPO-34催化剂原位合成及台架性能研究 被引量:2

In-Situ Preparation and Bench Performance of Copper-Based SAPO-34 Catalyst
下载PDF
导出
摘要 使用磷酸三乙胺为结构引导剂与磷源,原位制备Cu/SAPO-34-z催化剂,考察其经800℃-10%-24 h条件处理前后的催化活性,结合XRD,SEM,TG,BET等表征手段分析理化特性,并进一步验证其发动机台架性能。结果表明:磷酸三乙胺制备的SAPO-34分子筛结晶度更高,比表面积达到了682 m^(2)/g,粒径集中分布在1~3μm;焙烧过程中,由于铜铵络合物分解,致使350~450℃区间内失重加剧;高温水热处理对Cu/SAPO-34-z催化剂低温活性影响较小,温度窗口由173~515℃劣化至173~445℃。台架性能测试结果显示:自制SCR样件200℃时NO_(x)转化率超过90%,220~450℃接近100%,即使空速增至60000 h^(-1),NO_(x)转化率仍超过98%;温度对氨存储量的影响远大于空速,3种空速下温升导致的降幅分别是86%,86%,57.5%;氨存储率越高,NO_(x)转化率越高,且变动幅度受温度与空速影响越低;空速越高,氨逃逸量越高;温度越高,尿素停喷前后氨逃逸量差值越小。 The Cu/SAPO-34-z catalyst was prepared in situ by using triethylamine phosphate as the structure director and phosphorus source.The catalytic activity was investigated before and after 800℃-10%-24 h treatment.The physicochemical properties were analyzed by XRD,SEM,TG and BET,and the engine bench performance was further verified.The results showed that SAPO-34 prepared with triethylamine phosphate had higher crystallinity,the specific surface area was 682 m^(2)/g,and the particle size was concentrated in 1-3μm.In the roasting process,the weight loss at 350-450℃becomes serious due to the decomposition of copper-ammonium complex.High-temperature hydrothermal treatment had little effect on the low-temperature activity of Cu/SAPO-34-z catalyst and the activity window degraded from 173-515℃to 173-445℃.The bench performance test results showed that the NO_(x) conversion of self-developed SCR samples exceeded 90%at 200℃and approached 100%at 220-450℃.Even if the space velocity increased to 60000 h^(-1),the NO_(x) conversion still exceeded 98%.The effect of temperature on ammonia storage was much greater than space velocity.The decreases caused by temperature were 86%,86%and 57.5%respectively under the three space velocities.The higher the ammonia storage,the higher the NO_(x) conversion,and the lower the influence of fluctuation range on temperature and space velocity.The higher the space velocity,the higher the ammonia escape.The higher the temperature,the smaller the difference of ammonia escape before and after stopping the urea injection.
作者 李凯祥 任晓宁 李振国 王建海 邵元凯 张旺 LI Kaixiang;REN Xiaoning;LI Zhenguo;WANG Jianhai;SHAO Yuankai;ZHANG Wang(National Engineering Laboratory for Mobile Source Emission Control Technology,CATARC(Tianjin)Automotive Engineering Research Institute Co.,Ltd.,Tianjin 300300,China)
出处 《车用发动机》 北大核心 2022年第2期1-8,共8页 Vehicle Engine
基金 天津市科技计划项目(19YFZCSF00830) 河北省中央引导地方科技发展资金项目(206Z3702G) 中汽中心工程院新产品开发项目(S2122407) 中汽中心青年科技人才项目(21226303)。
关键词 原位制备 催化剂 催化活性 台架试验 in-situ synthesis catalyst catalytic activity bench test
  • 相关文献

参考文献5

二级参考文献20

  • 1国家环境保护总局,国家质量监督检验检疫总局.GB17691-2005车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限制及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)[S].北京:中国环境科学出版社,2005.
  • 2James Girard,Rachel Snow,Lambert, et al. The Influence of Ammonia to NO, Ratio on SCR Performance[C]. SAE Paper 2007-01-1581.
  • 3James W Girard, Clifford Montreuil, Jeong Kim, et al. Technical Advantages of Vanadium SCR Systems for Diesel NOx Control in Emerging Markets[C]. SAE Paper 2008-01-1029.
  • 4Jong Sun Lee, Doo Sung Baik. Evaluation of SCR System in Heavy-duty Diesel Engine[C]. SAE Paper 2008- 01-1320.
  • 5Thomas L Mckinley, Andrew G Alleyne. A Urea Decomposition Modeling Framework for SCR Systems [C]. SAE Paper 2009-01-1269.
  • 6Joseph R Theis. SCR Catalyst Systems Optimized for Lightoff and Steady-state Performance[C]. SAE Paper 2009-01-0901.
  • 7Youngjin Cho, Junhee Won, Dongin Lee, et al. The Development of SCR System for Heavy Duty Diesel Engine in Korean Market[C]. SAE Paper 2008-01-2490.
  • 8余皎.柴油机SCR系统中尿素分解和沉淀研究[C].SAE-C2010P193,2010,1:379-382.
  • 9国家环境保护总局,国家质量监督检验检疫总局.HJ437-2008车用压燃式、气体燃料点燃式发动机与汽车车载诊断(0BD)系统技术要求[S].北京:中国环境科学出版社,2008.
  • 10陶建忠,李国祥,佟德辉.基于V-W/Ti基催化剂的NH_3选择性催化还原NO_x的试验研究[J].内燃机工程,2008,29(2):22-25. 被引量:6

共引文献46

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部