期刊文献+

基于米勒循环的混动专用发动机开发 被引量:1

Development of Hybrid-Dedicated Engine based on Miller Cycle
下载PDF
导出
摘要 对奥托循环、米勒循环以及米勒循环加进气遮蔽(Masking)三种方案的缸内气流、混合气浓度以及燃烧性能进行对比分析,结果表明:米勒循环由于型线的影响一定程度上恶化了缸内气流运动与燃烧性能,而Masking可大幅度提升滚流比,改善混合气浓度,增加湍动能,改善燃烧性能。对奥托循环和Masking方案进行了试验研究,结果显示:相比奥托循环,Masking方案外特性最大扭矩降低12%,额定功率降低3%,外特性油耗平均降低14.6%,部分负荷工况油耗平均降低7.1%。在Masking方案的基础上引入冷却EGR,发动机最高热效率达到38.6%。 Comparative analysis of in-cylinder air flow,mixture concentration and combustion performance was conducted based on three schemes of the Otto cycle,Miller cycle and Miller cycle with inlet cover(Masking).The results showed that the Miller cycle deteriorated in-cylinder air flow and the combustion performance to some extent due to the profile.However,Masking could greatly enhance the tumble ratio,improve the mixture concentration,increase the turbulent kinetic energy,and hence improve the combustion performance.Then the Otto cycle and Masking solution were further studied by the experiment.With the Masking,the torque of wide open throttle decreased by 12%,the rated power decreased by 3%,and BSFC decreased by 14.6%and 7.1%at average under wide open throttle and partial load conditions respectively.The Masking solution can further make the maximum thermal efficiency reach up to 38.6%after introducing the cooling EGR.
作者 满兴家 周正群 梁源飞 叶年业 MAN Xingjia;ZHOU Zhengqun;LIANG Yuanfei;YE Nianye(SAIC-GM-Wuling Automobile Co.,Ltd.,Liuzhou 545007,China)
出处 《车用发动机》 北大核心 2022年第2期73-80,共8页 Vehicle Engine
关键词 米勒循环 进气遮蔽 流动分布 燃烧性能 混合动力 Miller cycle Masking flow distribution combustion performance hybrid
  • 相关文献

参考文献8

二级参考文献33

  • 1Adomeit P,Jakob M, Pischinger S,et al. Effect of intake portdesign on the flow field stability of a gasoline DI engine[C]//SAE 2011-01-1284,2011.
  • 2Cho J , Yoon Y,Lee J. et al. Hyundai's new generation 1. 8 Lgasoline engine[C]//SAE 2011-01-0417 ,2011.
  • 3Arcoumainis C,Bae C, Hu Z. Flow and combustion in a four-vaive spark-ignition optical engine[C]//SAE 940475 ,1994.
  • 4Ranasinghe J, Cant S. A turbulent combustion model for astratified charged,spark ignited internal combustion engine[C]//SAE 2000-01-0275,2000.
  • 5Malcolm J,Behringer M, Aleiferis P,et al. Characterizations offlow structures in a direct injection spark ignition engine usingPIV’LDV and CFD[C]//SAE 2011-01-1290,2011.
  • 6Gunasekaran J, Ganesan V. Effect of swirl and tumble on thestratified combustion of a DISI engine—a CFD study[C]//SAE2011-01-1214,2011.
  • 7Liang L,Reitz R,Iyer C,et al. Modeling knock in spark-ignitionengines using a G-equation combustion model incorporatingdetailed chemical kinetics[C]//SAE 2007-01-0165 ,2007.
  • 8Kirsten K,Brands C,Kratzsch M,et al.Selektive Umschaltung des Ventilhubs beim Ottomotor[J].MTZ,2012:2012-73.
  • 9Lake T,Stokes J,Murphy R,et al.Turbo-charging concepts for downsized DI gasoline engines[C].SAE Paper 2004-01-0036.
  • 10Wan Y,Du A.Reducing part load pumping loss and improving thermal efficiency through high com-pression ratio over-expanded cycle[C].SAE Paper 2013-01-1744.

共引文献42

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部