期刊文献+

Cauchy核奇异积分的反Gauss求积算法 被引量:1

Anti-Gaussian Quadrature Rules for Singular Integrals with Cauchy Kernel
下载PDF
导出
摘要 利用正交多项式的三项循环关系,定义了一新的正交多项式,建立了奇异积分的插值型反Gauss求积公式。用极限方法构造出求积系数和余项积分显式表达式,余项积分表达式表明奇异积分的反Gauss求积算法是收敛的,对奇异积分求积算法进行了模拟与仿真,结果表明,随着求积结点数的增多,通过反Gauss求积公式计算的积分值与积分精确值的误差在缩小,误差曲线也较为平滑,所得积分近似值逐渐逼近积分的精确值。该求积算法可应用到工程技术数值计算中,为应用软件的开发提供了理论依据。 A new orthogonal polynomial was defined by using the three-term recurrence relation for orthogonal polynomials,and the interpolation anti-Gaussian quadrature formulae for singular integrals were established.The explicit expressions of quadrature coefficient and remainder were constructed by the limit method.The expression of remainder shows that the anti-Gaussian quadrature formulae of singular integral are convergent.Finally,the proposed quadrature rules for singular integrals were simulated.The result shows that the error decreases with the number of quadrature nodes increasing,the error curve is relatively smooth,and the approximate value of the integral gradually approaches the exact value of the integral.This quadrature rules can be applied to the numerical calculation of engineering technology,which provides a theoretical basis for the development of some computer application software.
作者 李寒嫣 张彦铎 LI Hanyan;ZHANG Yanduo(School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《武汉工程大学学报》 CAS 2022年第2期186-189,共4页 Journal of Wuhan Institute of Technology
关键词 奇异积分 反Gauss求积 求积系数 代数精度 singular integral anti-Gaussian quadrature formulae quadrature coefficients algebraic precision
  • 相关文献

参考文献4

二级参考文献25

  • 1金国祥.含Hilbert核的奇异积分带重结点的求积公式[J].数学杂志,1997,17(3):427-432. 被引量:4
  • 2YU Gao-hang, XUE Wei, ZHOU Yi. A Nommonotone Adaptive Projected Gradient Method for Primal-dual Total Variation Image Restoration[J]. Signal Procvessing, 2014, 103 ( 8 ) : 242-249.
  • 3WANG Li-qian, XIAO Liang, ZHANG Jun. New Image Res- toration Method Associated with Tarliels, Shrinkage and Weighle(I Anisolrpic Tolal Varialic)[J]. Signal Progressing, 2013.93(4 ) :661-670.
  • 4ZHOU Hai-jun, WANG Chuang. Region Graph Partition Function Expansion and Approximate Free Energy Land- scapes: Theory and Some Numerical Results[J]. Journal of Statistical Physics, 2012,148 (3) : 513-547.
  • 5GOUSSEAU Y, MOREL J M. Are Natural Images of Bnunded Variation[J]. SIAM Journal on Mathematical Analysis, 2011, 33(17) :634-648.
  • 6CARASSO A S. Singular Integrals, Image Smoothness, and the Recovery of Texture in Image Deblurring[J]. SIAM Journal on Applied Mathematics, 2004,65 (4) : 1749-1774.
  • 7JIANG Ding-feng, HUANG Jian. Memorization Minimization by Coordinate Descent for Concave Penalized Generalized Linear Models[J]. Statistics and Computing, 2014, 24 (5) : 871-883.
  • 8IOANNIS E L, PANAGIOTIS P. A New Class of Spectral Con-jugate Gradient Methods Based on a Modified Secant Equa- tion for Unconstrained Optimization[J]. Journal of Computa- tional and Applied Mathematics, 2013,239(12) : 396-405.
  • 9LUCA A, GISELLA F. The Total Variation of Bounded Varia- tion Functions to Evaluate and Rank Fuzzy Quantities[J]. In- ternational Journal of Intelligent Systems, 2013, 28 (10) : 927-956.
  • 10SIMCOX T, FIEZ J A. Collecting Response Times Using Ama- zon Mechanical Turk and Adobe Flash[J]. Behavior Research Methods, 2014,48 ( 1 ) : 95- 111.

共引文献5

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部