期刊文献+

基于多特征信息融合的风电机组整机性能评估 被引量:3

Performance assessment of wind turbine based on multi-feature information fusion
下载PDF
导出
摘要 为解决风电机组单一健康状态模型可能发生误报的问题,提出一种基于信息融合的风电机组整机性能评估方法。首先改进了局部离群因子算法(LOF),用于筛选正常运行数据,使用Kendall相关系数进行参数选择,并基于深度信念网络(DBN)建立多个健康状态模型,提取实际运行数据与模型预测值的残差作为性能特征。再使用自组织映射神经网络(SOM)将残差空间映射到风电机组运行状态空间以实现信息融合,通过计算状态劣化指数来构建性能指标的方法,对风电机组进行性能评估。最后,通过实际的风电机组运行数据验证了所提方法的有效性。 To solve the problem that single-index normal behavior models of wind turbines might give false alarms,a new performance evaluation method based on information fusion for wind turbines was proposed.The Local Outlier Factor(LOF)algorithm was improved for screening normal operating data.Afterwards Kendall correlation coefficient was applied to parameter selection and several normal behavior models were constructed with Deep Belief Network(DBN),where the residuals between actual operating data and model prediction value represented performance features.Information fusion was then realized by mapping the residual space to operating behavior space using Self-organizing Mapping(SOM)neural network.On this basis,a performance index based on the deterioration degree of operating states was calculated for evaluating the performance of wind turbine.The validity and superiority of the proposed method was illustrated using real-world wind turbine operating data.
作者 曾天生 刘航 陈汉斯 王峥 褚学宁 ZENG Tiansheng;LIU Hang;CHEN Hansi;WANG Zheng;CHU Xuening(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;School of Management Engineering,Zhengzhou University of Aeronautics,Zhengzhou 450015,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2022年第4期1052-1061,共10页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(51875345,51475290)。
关键词 风电机组 性能评估 信息融合 深度信念网络 自组织映射 wind turbine performance assessment information fusion deep belief network self-organizing map
  • 相关文献

参考文献7

二级参考文献54

  • 1唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 2董进朝,刘忠明.风电齿轮箱轴承寿命计算方法研究[J].机械传动,2007,31(5):9-12. 被引量:11
  • 3Tchakoua P,Wamkeue R,Ouhrouche M,et al.Wind turbine condition monitoring:state-of-the-art review,new trends,and future challenges[J].Energies,2014,7(4):2595-2630.
  • 4Li J,Lei X,Li H,et al.Normal behavior models for the condition assessment of wind turbine generator systems [J].Electric Power Components and Systems,2014,42(11):1201-1212.
  • 5Yan Y L,Li J,Gao D W.Condition parameter modeling for anomaly detection in wind turbines[J].Energies,2014,7(5):3104-3120.
  • 6Peng C Y,Tseng S T.Mis-specification analysis of linear degradation models[J].IEEE Transactions on Reliability,2009,58( 3):444-455.
  • 7Whitmore G A,Schenkelberg F.Modelling accelerated degradation data using Wiener diffusion with a time scale transformation[J].Lifetime Data Analysis,1997,3(1):27-45.
  • 8Lee M L T,Whitmore G A.Threshold regression for survival analysis:modeling event times by a stochastic process reaching a boundary[J].Statistical Science,2006,21(4):501-513.
  • 9李辉,胡姚刚,唐显虎,刘志详.并网风电机组在线运行状态评估方法[J].中国电机工程学报,2010,30(33):103-109. 被引量:89
  • 10李辉,胡姚刚,杨超,李学伟,唐显虎.并网风电机组运行状态的物元评估方法[J].电力系统自动化,2011,35(6):81-85. 被引量:33

共引文献134

同被引文献53

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部