摘要
地表总辐射(solar radiation, R_(s))是一种对人类发展及其重要的新能源,同时也是影响区域环境变化的主要因素,R_(s)的准确估算对区域新能源发展及环境保护政策制定意义重大。故找出适用于京津冀地区辐射R_(s)模拟的标准方法是十分重要的,基于机器学习模型、辐射法和温度法共9种不同模型,分别计算了R_(s)在日值和月值尺度的精度,并计算了不同精度指标,结果表明:3种类型方法精度由高到低依次为机器学习模型>辐射法>温度法,其中极限学习机模型ELM在日值和月值尺度精度最高。
Rs is an important new energy source for human development and also a main factor affecting regional environmental change. Accurate estimation of Rs is of great significance for regional new energy development and environmental protection policyformulation. Therefore, it is very important to find out the standard method suitable for radiation Rs simulation inthe Beijing-Tianjin-Hebei area. In this paper, based on nine different models including machine learning model, radiation method,and temperature method, the precision of Rs at daily and monthly scales and different precision indexes were calculated respectively. The results showed that: in order of accuracy, the three types of methods were machine learning model > radiation method and > temperature method. Extreme learning machine model ELM has the highest accuracy in daily and monthly scales.
作者
张冉
贾悦
ZHANG Ran;JIA Yue(Hebei University of Water Resource&Electric Engineering&Remote Sensing&Smart Water Innovation Center,Cangzhou,Hebei 061001,China)
出处
《四川环境》
2022年第2期124-130,共7页
Sichuan Environment
基金
河北省高等学校科学研究计划(QN2021227)
河北省水利科研与推广计划项目(2020-64)
沧州市重点研发计划指导项目(204107007)。
关键词
京津冀地区
辐射
机器学习
极限学习机
The Beijing-Tianjin-Hebei region
radiation
machine learning model
extreme learning machine model