期刊文献+

基于模糊熵与CS-ELM的供输弹系统早期故障识别 被引量:2

Early Fault Recognition of the Bomb Supply and Transport System Based on Fuzzy Entropy and CS-ELM
下载PDF
导出
摘要 针对供输弹系统早期采集的信号中成分复杂,故障特征难以提取和识别的问题,提出一种基于模糊熵与布谷鸟改进的极限学习机(CS-ELM)的供输弹系统早期故障预示方法。运用改进的可调品质因子小波变换对信号进行滤波降噪,提取各子带信号的模糊熵特征;选取模糊熵值较大的5个子带进行重构,完成降噪并将其模糊熵组成特征向量;运用CS-ELM对所提取的特征向量进行早期故障预示并与ELM的诊断结果进行对比。试验结果验证了该方法的有效性,其预示准确率达90.7%。 For the complex components in the signals collected by the bomb supply and transport system in the early stage, and difficulty in extracting and identifying fault characteristics, a kind of early fault prediction method of the bomb supply and transport system based on fuzzy entropy and cuckoo improved extreme learning machine(CS-ELM) was proposed.The improved adjustable quality factor wavelet transform was used to filter the signal and the fuzzy entropy characteristics of each sub-band signal was extracted;the five sub-bands with larger fuzzy entropy value were selected to reconstruct to complete the noise reduction and their fuzzy entropy was incorporated into feature vectors;CS-ELM was used to predict the early failure of the extracted feature vector and the result was compared with the diagnosis result of ELM.The experimental results show that the proposed method is effective, and the prediction accuracy is 90.7%.
作者 韩慧苗 许昕 潘宏侠 李磊磊 HAN Huimiao;XU Xin;PAN Hongxia;LI Leilei(School of Mechanical Engineering,North University of China,Taiyuan Shanxi 030051,China;System Identification and Diagnosis Technology Research Institute,North University of China,Taiyuan Shanxi 030051,China)
出处 《机床与液压》 北大核心 2022年第7期164-169,共6页 Machine Tool & Hydraulics
基金 国家自然科学基金面上项目(51675491)。
关键词 供输弹系统 故障识别 模糊熵 布谷鸟搜索算法 极限学习机 Bomb supply and transport system Fault identification Fuzzy entropy Cuckoo search algorithm Extreme learning machine
  • 相关文献

参考文献8

二级参考文献74

  • 1罗忠辉,薛晓宁,王筱珍,吴百海,何真.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005,25(14):125-129. 被引量:67
  • 2罗红根,朱利民,丁汉.基于主动轮廓模型和水平集方法的图像分割技术[J].中国图象图形学报,2006,11(3):301-309. 被引量:34
  • 3赵学智,陈统坚,叶邦彦.基于奇异值分解的铣削力信号处理与铣床状态信息分离[J].机械工程学报,2007,43(6):169-174. 被引量:35
  • 4Wang Z Y, Chen J, Dong G M, et al. Constrained independent component analysis and its application to machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25(7): 2501-2512.
  • 5Selesnick I W. Wavelet transform with tunable Q-factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560-3575.
  • 6Bayram I, Selesnick I W. Overcomplete discrete wavelet transforms with rational dilation factors[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 131-145.
  • 7Selesnick I W. Resonance-based signal decomposition: a new sparsity-enabled signal analysis method[J]. Signal Processing, 2011, 91(12): 2793-2809.
  • 8Luo J S, Yu D J, Liang M. A kurtosis-guided adaptive demodulation technique for bearing fault detection based on tunable-Q wavelet transform[J]. Measurement Science and Technology, 2013, 24(5).
  • 9Antoni J, Bonnardot F, Raad A, et al. Cyclostationary modelling of rotating machine vibration signals[J]. Mechanical Systems and Signal Processing, 2004, 18(6): 1285-1314.
  • 10Wang H C, Chen J, Dong G M. Weak fault feature extraction of rolling bearing based on minimum entropy de-convolution and sparse decomposition[J]. Journal of Vibration andControl, 2014, 20(8): 1148-1162.

共引文献59

同被引文献25

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部