期刊文献+

一种基于下行控制信息的移动通信流量分类方法 被引量:1

A Mobile Communication Traffic Classification Method Based on Downlink Control Information
下载PDF
导出
摘要 伴随着诸多新兴业务的发展,对移动通信的数据速率的要求也越来越高,网络运营商需要在确保用户隐私安全的情况下进行流量分类,分配所需的网络资源来服务用户,更好地优化移动通信的体系结构。传统的基于协议特征、关键字信息的流量分类方法会带来精度下降、实时性不足等问题。文章采集4G LTE网络中的下行控制信息(Downlink Control Information,DCI),训练了三类基准机器学习分类模型和长短期记忆网络(Long Short-Term Memory,LSTM)模型,识别了5种主流应用流量。实验结果表明,LSTM模型的F1-Score达到了98.92%,在不侵犯用户隐私的前提下,实现了移动通信流量的高精度分类。 With the growth of several developing services,the data rate needs for mobile communications are increasing.Network operators must classify traffic while maintaining user privacy and security,and then distribute the necessary network resources to provide the best possible service to consumers.The architecture of mobile communication that has been optimized.Traditional techniques of traffic classification based on protocol characteristics and keyword information will introduce issues such as decreasing accuracy and insufficient real-time performance.This paper collected Downlink Control Information(DCI)in a 4G LTE network and trained three different types of benchmark machine learning classification models and Long Short-Term Memory(LSTM)models to identify five common application traffic patterns.The results indicate that the LSTM model's F1-Score is 98.92 percent,allowing for high-precision classification of mobile communication traffic without jeopardizing user privacy.
作者 刘晓勇 田宏峰 郑崇辉 LIU Xiaoyong;TIAN Hongfeng;ZHENG Chonghui(The State Radio Monitoring_center Testing Center,SRTC,Beijing 100041,China;Publishing House of Electronics Industry Ltd.,Co.,Beijing 100036,China;Hangzhou Institute for Advanced Study,Chinese Academy of Science,Hangzhou 310024,China)
出处 《数字通信世界》 2022年第4期33-36,共4页 Digital Communication World
关键词 移动通信网络 流量识别 下行控制信息 LSTM mobile communication network traffic identification downlink control information LSTM
  • 相关文献

参考文献4

二级参考文献60

  • 1刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 2林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 3Breiman L. Bagging Preditors [J].Machine Learning, 1996,24(2).
  • 4Dietterich T. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization [J].Machine Learning, 2000,40(2).
  • 5Ho T K. The Random Subspace Method for Constructing Decision Forests [J].Trans. on Pattern Analysis and Machine Intelligence, 1998,20 (8).
  • 6Amit Y, Gernan D. Shape Quantization and Recognition with Randomized Trees[J]. Neural Computation, 1997,9(7). Breiman L Random Forest[J]. Machine Learning, 2001,45(1).
  • 7Breiman L. Random Forests[J]. Machine Learning, 2001,45(1).
  • 8Tibshirani tL Bias, Variance, and Prediction Error for Classification Rules[C]. Technical Report, Statistics Department, University of Toronto, 1996.
  • 9Wolpert D H, Macready W G. An Efficient Method to Estimate Bagging's Generalization Error[J]. Machine Learning, 1999,35(1).
  • 10Breiman L. Out-of-bag Estimation[EB/OL]. [2010- 06- 30]. http//stat, berkeley, edu/ pub/ users/ breiman / OOB estimation, ps.

共引文献699

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部