摘要
针对交通安全中疲劳驾驶状态识别问题,使用单一的疲劳驾驶特征的方法识别率较低,本文提出一种基于面部多特征加权和的疲劳识别方法.通过人眼状态检测算法提取眼部疲劳参数,即持续闭眼时间、闭眼帧数比、眨眼频率,通过打哈欠状态检测得到打哈欠次数和打哈欠持续时间,通过头部运动状态分析得到点头频率,建立融合以上六个特征的驾驶疲劳状态检测模型来评估驾驶员的疲劳等级并进行相应的预警.实验测试数据选自NTHU驾驶员疲劳检测视频数据集的部分数据.经实验调整后,发现该方法的识别准确率较高,识别效果好.
Aiming at the problem of fatigue driving state recognition in traffic safety,the recognition rate of using a single fatigue driving feature is low.This paper studies and proposes a fatigue recognition method based on the weighted sum of facial multi-features.The eye fatigue parameters,such as continuous eye closing time,eye closing frame ratio and blink frequency,are extracted by human eye state detection algorithm.The number and duration of yawning are obtained through yawning state detection,the nodding frequency is obtained through head motion state analysis,and a driving fatigue state detection model integrating the above six characteristics is established to evaluate the driver’s fatigue level and give the corresponding early warning.The experimental test data are selected from part of the NTHU driver fatigue detection video data set.After experimental adjustment,it is found that this method has high recognition accuracy and provide a good recognition effect.
作者
胡峰松
程哲坤
徐青云
彭清舟
全夏杰
HU Fengsong;CHENG Zhekun;XU Qingyun;PENG Qingzhou;QUAN Xiajie(College of Computer Science and Electronic Engineering,Hunan University,Changsha 410082,China)
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2022年第4期100-107,共8页
Journal of Hunan University:Natural Sciences
基金
赛尔网络下一代互联网技术创新项目(NGII20161009)。
关键词
驾驶安全
特征点定位
眨眼状态识别
多特征融合
疲劳识别
driving safety
feature point positioning
blink of an eye state recognition
multiple feature fusion
fa⁃tigue recognition