期刊文献+

基于偏微分方程与维纳滤波模型的图像去噪 被引量:1

Image Denoising Based on Partial Differential Equation and Wiener Filter Model
下载PDF
导出
摘要 图像去噪是图像处理中十分重要的环节,基于偏微分方程与维纳滤波模型的图像去噪技术则有着强大的数学理论作为支撑,是图像去噪环节中十分重要的研究方法.针对图像中的噪声问题,利用TV全变分偏微分方程模型与维纳滤波模型相结合的方法对含噪图像进行去噪处理.仿真实验验证了该方法的可行性,并通过实验结果表明,该方法对于恢复图像、提高图像信噪比和保持图像边缘细节上有着良好的效果. Image denoising is a very important part of image processing.Image denoising technology based on partial differential equations and Wiener filter model is supported by powerful mathematical theory and is a very important research method in image denoising.Aiming at the noise problem in the image,the method of combining the TV total variation partial differential equation model and the Wiener filter model is used to denoise the noisy image.Simulation experiments verify the feasibility of the method,and the experimental results show that the method has good effects on restoring images,improving image signal-to-noise ratio and maintaining image edge details.
作者 刘光宇 曾志勇 曹禹 赵恩铭 邢传玺 LIU Guangyu;ZENG Zhiyong;CAO Yu;ZHAO Enming;XING Chuanxi(School of Engineering,Dali University,Dali 671003,China;School of Physics and Optoelectronic Engineering,Harbin Engineering University,Harbin 150001,China;School of Electrical Information Engineering,Yunnan Nationalities University,Kunming 650031,China)
出处 《四川职业技术学院学报》 2022年第2期163-168,共6页 Journal of Sichuan Vocational and Technical College
基金 国家自然科学基金项目“基于无线传感器网络的云南高原湖泊声层析监测关键技术研究”(61761048) 云南省地方本科高校基础研究联合专项资金项目“基于谱聚类的水下目标探测关键技术研究”(2019FH001(-066)) 黑龙江省自然科学基金“基于自旋交换泵浦技术的高透过率、超窄带原子滤光器的研究”(LC2018026)。
关键词 图像去噪 偏微分方程 TV模型 维纳滤波 image denoising partial differential equations TV model wiener filter
  • 相关文献

参考文献6

二级参考文献57

  • 1韩佳雪,张林鹏,张文坤.基于分数阶微分和高斯曲率滤波的遥感图像增强[J].信息通信,2019,32(11):7-10. 被引量:3
  • 2Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992,60(1/4): 259-268.
  • 3You Yuli, Kaveh M. Fourth-order partial differential equations for noise removal[J]. IEEE Transactions on Image Processing, 2009,9(10): 1723-1730.
  • 4Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing, 2003, 12( 12): 1579-1590.
  • 5Lysaker M, Tai X C. Iterative image restoration combining total variation minimization and a second-order functional[J]. International Journal of Computer Vision, 2006, 66(1): 5-18.
  • 6Li Fang, Shen Chaomin, Fan Jingsong, et al. Image restoration combining a total variational filter and a fourth-order filter[J]. Journal of Visual Communication and lmage Representation, 2007, 18(4): 322-330.
  • 7Kim S, Lim H. Fourth-order partial differential equations for effective image denoising[J]. Electronic Journal of Differ ential Equations, 2009,17: 107-121.
  • 8Lu Bibo, Liu Qiang. An edge-preserving fourth order POE method for image denoising[C]/fProceedings of the 2nd International Conference on Advanced Computer Control, Shenyang, China, Mar 27-29,2010. Piscataway, NJ, USA: IEEE, 2010: 153-157.
  • 9Zhu Wei, Chan T. Image denoising using mean curvature[EB/OL].[2014-11-06]. bttp://www.math.nyu.edu/-wzhul.
  • 10Zhu Wei, Chan T. Image denoising using mean curvature of image surface[J]. SIAM Journal on imaging Sciences, 2012, 5(1): 1-32.

共引文献27

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部