期刊文献+

基于遗传算法的Tiling覆盖策略天文卫星任务规划 被引量:2

Mission Planning for Astronomical Satellite Based on Genetic Algorithm under Tiling Coverage Strategy
下载PDF
导出
摘要 天文卫星机遇目标任务规划是一个复杂的多目标优化问题。针对Tiling覆盖策略的机遇目标任务规划要求及其约束条件进行抽象,建立任务规划问题模型,在规划模型基础上设计基于遗传算法的多目标优化任务规划算法TPA,并通过实例数据验证了不同参数条件下的求解。在解决Tiling覆盖策略的天文卫星机遇目标多目标任务规划问题时,所提方法能够在保证算法收敛性的同时兼顾优先级和规划路径,满足规划需求。 Astronomical observation is an important means for space scientific research.ToO(Target of Opportunity),such as GW(Gravitational Wave)and GRB(Gamma Ray Burst),are significant phenomena in astronomical observation.The planning of ToO observation is an important task.Astronomy satellite planning is a complex multi-objective optimization problem.In this paper,the mission planning requirements and constraints under tiling coverage strategy are abstracted,and the ToO planning model under tiling coverage strategy is established.Based on the model,a multi-objective optimization planning algorithm TPA(ToO Planning Algorithm)based on GA(Genetic Algorithm)is designed.An example is given to illustrate the solution under different parameters,where the simulation input data is provided by JAUBERT Jean of SVOM team.The simulation result shows that the TPA can effectively solve the multi-objective task planning problem of astronomical satellites ToO under coverage strategy.
作者 徐子羚 刘玉荣 冯准 XU Ziling;LIU Yurong;FENG Zhun(National Space Science Center,Chinese Academy of Sciences,Beijing 100190;University of Chinese Academy of Sciences,Beijing 100049)
出处 《空间科学学报》 CAS CSCD 北大核心 2022年第2期321-328,共8页 Chinese Journal of Space Science
基金 中国科学院战略性先导科技专项(XDA15040100) 北京市科委空间科学实验室培育项目(E0396001)共同资助。
关键词 任务规划 机遇目标 Tiling覆盖策略 多目标优化 Mission planning Target of opportunity Tiling coverage strategy Multi-objective optimization
  • 相关文献

参考文献5

二级参考文献41

  • 1刘薇,林宝军.卫星巡天扫描运控模式方法的研究[J].宇航学报,2006,27(6):1365-1368. 被引量:3
  • 2刘薇,林宝军.天文卫星巡天扫描智能规划模型及仿真[J].系统仿真学报,2007,19(3):654-656. 被引量:5
  • 3王钧,李军,陈健,郭玉华,景宁.多目标EOSs联合成像调度方法[J].宇航学报,2007,28(2):354-359. 被引量:33
  • 4汪祖柱 程家兴 方宏彬.基于Pareto排序算法的多目标演化算法的策略分析[C].见:高隽主编.第14届中国神经网络学术会议论文集[C].中国合肥,2004-10..
  • 5袁亚湘 孙文渝.最优化理论与方法[M].北京:科学出版社,1999..
  • 6Albert J Fleig Jr.A Passive Method for Scanning the Celestial Sphere[R].CALIF.,AUG.12-14,1968.
  • 7Hajela P,Lin C Y.Genetic Search Strategies in Multi-criterion Optimal Design[J].Structural Optimization,1992,5(4):99-107.
  • 8Silva C M,Biscaia E C Jr.Genetic Algorithm Development for Multi-objective Optimization of Bath Free-radical Polymerization Reactor[J].Computers and Chemical Engineering,2003,27:1329-1344.
  • 9Whitley D.The Genitor Algorithm and Selection Pressure:Why Rank-based Allocation Reproduction Trials is Best[C]// Proceeding of the 3rd international conference on genetic algorithm,Morgan Kaufmann Publishers,Los Altos,CA 1989.
  • 10Johnston M D, Giuliano M E. Multi-objective scheduling for space science missions [J].J. Adv. Comp. Intell. Inf.,2011, 15(8):1140-1148.

共引文献28

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部