期刊文献+

车企舆情正负面情感识别与预测

Emotion Recognition and Prediction of Public Opinions about Automobile Enterprises
下载PDF
导出
摘要 为帮助企业获得更多的信息,进一步了解客户,预测和增强客户体验,合理改进产品性能,通过情感词典来对汽车行业的网络舆情进行分析与预测.首先对预处理后的文本进行分词,提取关键词,绘制词云图,初步判定舆情中人们关注的热点.然后利用训练集数据对情感词典进行训练,提取文本特征,并采用基于情感词典的传统情感分类法进行文本情感识别分类.分类结果显示,训练集的预测准确率为85.73%,测试集的准确率为83.62%.最后利用LDA模型对文本进行主题分析,得到正面、负面文本数据的第一主题与第二主题. With the development of the Internet,there are a large number of online public opinions in various industries.In this paper,positive and negative emotion identification and prediction are carried out according to the public opinion of automobile enterprises.First of all,word segmentation,keyword extraction and word cloud map are carried out on the pre-processed text to preliminarily determine the hot spots that people pay attention to in the public opinion.Then,the Sentiment Dictionary is trained to extract text features with the data from the training set,and the traditional Sentiment Classification based on Sentiment Dictionary is used for text sentiment recognition and classification.The classification results showed that the prediction accuracy of the training set was 85.73%,while the accuracy of the test set was 83.62%.Finally,LDA model is used to analyze the topic of text,and the first topic and second topic of positive and negative text data are obtained.
作者 秦苗 胡二琴 QIN Miao;HU Erqin(School of Science,Hubei Univ.of Tech.,Wuhan 430068,China)
出处 《湖北工业大学学报》 2022年第2期116-120,共5页 Journal of Hubei University of Technology
基金 湖北省教育厅科学技术研究计划青年人才项目(Q2017404) 湖北工业大学博士科研启动基金项目(BSQD2017072)。
关键词 舆情分析 词云图 情感词典 主题分析 LDA模型 public opinion analysis word cloud emotion dictionary thematic analysis LDA model
  • 相关文献

参考文献7

二级参考文献116

  • 1王细薇,樊兴华,赵军.一种基于特征扩展的中文短文本分类方法[J].计算机应用,2009,29(3):843-845. 被引量:36
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3HuM, Liu B. Mining opinion features in customer reviews[ C]. In: Proceedings ofNineteeth NationalCon- ference on Artificial In - tellgience ( AAAI - 2004 ). San Jose, USA :2004,756 - 758.
  • 4Chin, A. and Chignell, M. 2006. A social hypertext model for finding community in blogs. In Proceedings of the Seventeenth Conference on Hypertext andHypermedia ( Odense, Denmark, August22 - 25,2006 ). HYPER- TEXT06. ACM Press, New York, NY, 10 - 15.
  • 5胡佳妮,郭军,邓伟洪,徐蔚然.基于短文本的独立语义特征抽取算法[J].通信学报,2007,28(12):121-124. 被引量:4
  • 6Hu M Q, Liu B. Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2004. 168-177.
  • 7Liu B. Sentiment Analysis and Opinion Mining. San Rafael, CA: Morgan & Claypool Publishers, 2012.
  • 8Strapparava C, Valitutti A. WordNet-affect: an affective ex- tension of wordNet. In: Proceedings of the 2004 Interna- tional Conference on Language Resources and Evaluation. Lisbon: LREC. 2004. 1083-1086.
  • 9Neviarouskaya A, Prendinger H, Ishizuka M. SentiFul: a lex- icon for sentiment analysis. IEEE Transactions on Affective Computing, 2011, 2(1): 22-36.
  • 10Kim S M, Hovy E. Determining the sentiment of opinions. In: Proceedings of the 20th International Conference on Computational Linguistics. Stroudsburg, PA, USA: Asso- ciation for Computational Linguistics, 2004. 1367-1377.

共引文献630

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部