摘要
在同一场景下被捕获的一对红外与可见光图像虽然具有不同的模态,但是具有共享的公有信息和互补的私有信息,学习并融合上述信息可以得到一幅完整的融合图像。受益于残差网络的启发,在训练学习阶段,通过网络分支间特征层面的互换和相加,强制每一个分支映射到一幅具有全局特征的标签图上,来鼓励各个分支学习对应模态图像的私有特征。直接学习得到图像的私有特征可以避免设计复杂的融合规则并保证特征细节信息的完整。在融合预测阶段,采用最大值融合策略融合私有特征,并在解码层与学习得到的公有特征相叠加,最后解码出集成了红外和可见光图像信息的融合图像。使用在NYU-D2上合成的多聚焦图像数据集训练该模型,在TNO真实的红外和可见光数据集上进行测试,实验结果表明,与当前主流的红外与可见光融合算法相比,所提算法在主观效果和客观评价指标上都取得了较好的成绩。
Although a pair of infrared and visible images captured in the same scene have different modes,they also have shared public information and complementary private information.A complete fusion image can be obtained by learning and integrating above information.Inspired by residual network,in the training stage,each branch is forced to map a label with global features through the interchange and addition of feature-levels among network branches.What’s more,each branch is encouraged to learn the private features of corresponding images.Directly learning the private features of images can avoid designing complex fusion rules and ensure the integrity of feature details.In the fusion stage,the maximum fusion strategy is adopted to fuse the private features,add them to the learned public features at the decoding layer and finally decode the fused image.The model is trained over a multi-focused data set that is synthesized from the NYU-D2 and tested over the real-world TNO data set.Experimental results show that compared with the current mainstream infrared and visible fusion algorithms,the proposed algorithm achieves better results in subjective effects and objective evaluation indicators.
作者
高元浩
罗晓清
张战成
GAO Yuan-hao;LUO Xiao-qing;ZHANG Zhan-cheng(School of Artificial Intelligence and Computer,Jiangsu University,Wuxi,Jiangsu 214122,China;Pattern Recognition and Computational Intelligence Engineering Laboratory,Wuxi,Jiangsu 214122,China;School of Electronics and Information Engineering,Suzhou University of Science and Technology,Suzhou,Jiangsu 215009,China)
出处
《计算机科学》
CSCD
北大核心
2022年第5期58-63,共6页
Computer Science
基金
国家自然科学基金(61772237)
江苏省六大人才高峰项目(XYDXX-030)。
关键词
残差学习
特征提取
私有特征
公有特征
图像融合
Residual learning
Feature extraction
Private feature
Public feature
Image fusion