期刊文献+

一种工业机器人多目标轨迹优化算法 被引量:6

A multi-objective trajectory optimization algorithm for industrial robot
下载PDF
导出
摘要 为解决工业机器人工作效率低、能耗损失严重和关节冲击磨损较大的问题,提出了一种基于布谷鸟搜索(cuckoo search,CS)算法和非支配排序遗传算法-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)的混合算法(简称为CSNSGA-Ⅱ),用于机器人的轨迹优化。采用5次非均匀有理B样条(non-uniform rational B-splines,NURBS)曲线作为工业机器人的轨迹规划曲线,同时以运动时间、能耗和冲击磨损为优化目标构建相应的多目标轨迹优化模型,并在速度、加速度和加加速度的约束下采用CSNSGA-Ⅱ进行轨迹优化。CSNSGA-Ⅱ以Tent混沌映射初始化时间序列,采用不可行度算法将解分为可行解与不可行解,并利用改进的CS算法对不可行解进行处理。利用MATLAB软件对6R勃朗特机器人进行建模仿真,并对得到的非支配解集和归一化加权迭代最优值进行对比分析。仿真结果表明,相比于NSGA-Ⅱ、多目标粒子群优化(multi-objective particle swarm optimization,MOPSO)算法,所提出的CSNSGA-Ⅱ可更有效地对6R勃朗特机器人的轨迹进行优化,所得非支配解集更加均匀且接近真实Pareto前沿,最终得到的轨迹曲线较为平滑,可同时满足6R勃朗特机器人的高效率、低能耗及少冲击磨损的要求。所提出的方法可为进一步推动工业机器人在生产中的广泛应用以及提高生产能力和效率提供指导。 In order to solve the problems of low work efficiency, serious energy loss and large joint impact wear of industrial robots, a hybrid algorithm(referred to as CSNSGA-Ⅱ) based on cuckoo search(CS) algorithm and non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ) was proposed for trajectory optimization of robots. The quintic non-uniform rational B-splines(NURBS) curve was used as the trajectory planning curve of the industrial robot. At the same time, the motion time, energy consumption and impact wear were taken as the optimization objectives and the corresponding multi-objective trajectory optimization model was constructed. Under the constraints of speed, acceleration and jerk, the CSNSGA-Ⅱ was used to optimize trajectory. The CSNSGA-Ⅱ initialized the time series with the Tent chaotic map, and used the infeasibility algorithm to divide the solutions into feasible solution and infeasible solution, and then the infeasible solution was processed by the improved CS algorithm. The 6R Bronte robot was modeled and simulated by using the MATLAB software, and the obtaind nondominated solution set and the normalized weighted iterative optimal value were compared and analyzed. The simulation results showed that, compared with the NSGA-Ⅱ and the multi-objective particle swarm optimization(MOPSO) algorithm, the proposed CSNSGA-Ⅱ could optimize the trajectory of 6R Bronte robot more effectively, and the non-dominated solution set was more uniform and close to the real Pareto front, and the final trajectory curve was relatively smooth, which could meet the requirements of high efficiency, low energy consumption and less impact wear of 6R Bronte robot at the same time. The proposed method can provide guidance for further promoting the widespread application of industrial robots in production and improving production capacity and efficiency.
作者 李琴 贾英崎 黄玉峰 李刚 叶闯 LI Qin;JIA Ying-qi;HUANG Yu-feng;LI Gang;YE Chuang(School of Mechatronic Engineering,Southwest Petroleum University,Chengdu 610500,China;Eastern Geophysical Exploration Co.,Ltd.,China National Petroleum Corporation,Zhuozhou 072750,China)
出处 《工程设计学报》 CSCD 北大核心 2022年第2期187-195,共9页 Chinese Journal of Engineering Design
基金 国家自然科学基金资助项目(41902326) 四川省科技计划项目(22GJHZ0284) 中国石油前瞻性基础性战略性技术攻关项目(2021DJ3601) 南充市-西南石油大学市校科技战略合作专项(SXHZ048)。
关键词 工业机器人 轨迹规划 非均匀有理B样条(NURBS)曲线 多目标优化 非支配排序遗传算法-Ⅱ(NSGA-Ⅱ) industrial robot trajectory planning non-uniform rational B-splines(NURBS)curve multi-objective optimization non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ) cuckoo search(CS)algorithm
  • 相关文献

参考文献6

二级参考文献62

  • 1何平,刘宏,金明河.基于样条函数的机器人轨迹规划方法[J].机器人,2003,25(z1):614-618. 被引量:16
  • 2夏红伟,翟彦斌,马广程,邓雅,王常虹.基于混沌粒子群优化算法的空间机械臂轨迹规划算法[J].中国惯性技术学报,2014,12(2):211-216. 被引量:13
  • 3谭冠政,徐雄,肖宏峰.工业机器人实时高精度路径跟踪与轨迹规划[J].中南大学学报(自然科学版),2005,36(1):102-107. 被引量:28
  • 4冯培恩,孙守迁,杨毅,齐中伟.采掘机器人的规划级控制技术研究[J].自动化学报,1995,21(1):33-39. 被引量:8
  • 5Xu X R,Wang X G, Qin F. Trajectory planning of robot manipula- tors by using spline function approach[ A ]. Proceedings of the 3rd World Congress on Intelligent Control and Automation [ C ] , 2000: 15-12190.
  • 6Huang P F, Xu Y S. PSO-Based time-optimal trajectory planning for space robot with dynamic constraints [ C 1 - Proceeding of the 2006 IEEE International Conference on Robotics and Bionfinmetics. 2006 (9) : 1402-1407.
  • 7Huang G,Li D,Yang J. A research on partical swarm optinfization and its application in robot manipulators [ C ]. IEEE Pacific-Asic Workshop on Computational Intelligence and Industrial Applica- tion. 2008:377 -381.
  • 8TIAN L F,CURTIS C. An effective robot trajectory planning method using a genetic algorithm [J]. Mechatronics,2004,14(5): 455-470.
  • 9ZHA X F,CHEN X Q.Trajectory coordination planning and control for robot manipulators in automated material handling and processing [J].International Journal of Advanced Manufacture Technology,2004,23(11): 831-845.
  • 10GASPARETTO A,ZANOTTO V. A new method for smooth trajectory planning of robot manipulators [J].Mechanism and Machine Theory, 2007, 42(4): 455-471.

共引文献314

同被引文献74

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部