摘要
Because of the viscoelasticity of the subsurface medium,seismic waves will inherently attenuate during propagation,which lowers the resolution of the acquired seismic records.Inverse-Q filtering,as a typical approach to compensating for seismic attenuation,can efficiently recover high-resolution seismic data from attenuation.Whereas most efforts are focused on compensating for highfrequency energy and improving the stability of amplitude compensation by inverse-Q filtering,low-frequency leakage may occur as the high-frequency component is boosted.In this article,we propose a compensation scheme that promotes the preservation of lowfrequency energy in the seismic data.We constructed an adaptive shaping operator based on spectral-shaping regularization by tailoring the frequency spectra of the seismic data.We then performed inverse-Q filtering in an inversion scheme.This data-driven shaping operator can regularize and balance the spectral-energy distribution for the compensated records and can maintain the low-frequency ratio by constraining the overcompensation for high-frequency energy.Synthetic tests and applications on prestack common-reflectionpoint gathers indicated that the proposed method can preserve the relative energy of low-frequency components while fulfilling stable high-frequency compensation.
基金
supported by the National Natural Science Foundation of China (No. 41930429)
14th Five-Year Prospective and Basic Research Program of the CNPC (No. 2021DJ3506)
the China National “111” Foreign Experts Introduction Plan for Tight Oil & Gas Geology and Exploration
the Deep-Ultradeep Oil & Gas Geophysical Exploration and Qingdao Applied Research Projects