期刊文献+

脑功能网络的动态相似度计算与度量

The measurements of the similarity of dynamic brain functional network
原文传递
导出
摘要 大脑的功能网络会随脑发育、病变、衰老等时间过程改变。现有针对个体间脑功能网络变化的差异(或相似)度量大都是用于评估网络的静态特性的,不适用于评估脑功能网络沿时间轴发生的大跨度、大规模的演变而形成的动态特性。本文提出了一种用于度量脑网络动态相似性的动态网络相似度(DNS)指标。该指标通过结合动态网络的演化和结构特征进行相似度度量。通过四组具有不同演化和结构特征(变化幅度、变化趋势、连接强度分布、连接强度跨度)的模拟动态网络验证了DNS指标的性能。此外,还使用了一组采用经颅直流电刺激(tDCS)治疗的13名中风患者之间脑功能网络的真实数据对DNS指标进行了检验,并与传统静态网络相似度方法作了比较。结果表明DNS指标与模拟动态网络的变化幅度、变化趋势、连接强度分布、连接强度跨度均显著相关。使用DNS指标,可以发现中风患者在tDCS治疗前后运动网络的动态演变具有较强相似性;而利用传统静态网络相似度则不能反映这一动态特性,所得到的患者子组间的相似度结果在治疗前与治疗后差异较大。实验结果表明,DNS指标能够较准确地反映动态网络的演化及结构特性,具有较强的鲁棒性。这一新指标克服了传统静态网络相似度度量方法缺乏总体评估时序脑功能数据能力的缺点。 Brain functional network changes over time along with the process of brain development, disease, and aging. However, most of the available measurements for evaluation of the difference(or similarity) between the individual brain functional networks are for charactering static networks, which do not work with the dynamic characteristics of the brain networks that typically involve a long-span and large-scale evolution over the time. The current study proposes an index for measuring the similarity of dynamic brain networks, named as dynamic network similarity(DNS). It measures the similarity by combining the “evolutional” and “structural” properties of the dynamic network. Four sets of simulated dynamic networks with different evolutional and structural properties(varying amplitude of changes,trend of changes, distribution of connectivity strength, range of connectivity strength) were generated to validate the performance of DNS. In addition, real world imaging datasets, acquired from 13 stroke patients who were treated by transcranial direct current stimulation(tDCS), were used to further validate the proposed method and compared with the traditional similarity measurements that were developed for static network similarity. The results showed that DNS was significantly correlated with the varying amplitude of changes, trend of changes, distribution of connectivity strength and range of connectivity strength of the dynamic networks. DNS was able to appropriately measure the significant similarity of the dynamics of network changes over the time for the patients before and after the tDCS treatments.However, the traditional methods failed, which showed significantly differences between the data before and after the tDCS treatments. The experiment results demonstrate that DNS may robustly measure the similarity of evolutional and structural properties of dynamic networks. The new method appears to be superior to the traditional methods in that the new one is capable of assessing the temporal similarity of dynamic functional imaging data.
作者 何勇权 张利 房珊 曾雅琴 杨威 陈卫东 邵玉玲 程瑞动 叶祥明 徐冬溶 HE Yongquan;ZHANG Li;FANG Shan;ZENG Yaqin;YANG Wei;CHEN Weidong;SHAO Yuling;CHENG Ruidong;YE Xiangming;XU Dongrong(Shanghai Key Laboratory of Magnetic Resonance,School of Physics and Electronic Science,East China Normal University,Shanghai 200062,P.R.China;Department of Rehabilitation Medicine,Zhejiang Province People’s Hospital,Hangzhou Medical College,Hangzhou 310014,P.R.China;Qiushi Academy for Advanced Studies,Zhejiang University,Hangzhou 310027,P.R.China;Columbia University&New York State Psychiatric Institute,New York,NY 10032,USA)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2022年第2期237-247,共11页 Journal of Biomedical Engineering
基金 国家重点研发计划(2017YFC1308500,2017YFC1308502) 上海市科委国际合作项目(16550720500) 浙江省“尖兵”“领雁”研发攻关计划项目(2022C03029,2021C03050)。
关键词 脑功能网络 动态演变 图论 相似度 功能磁共振成像 Brain functional network Dynamic evolution Graph theory Similarity Functional magnetic resonance imaging
  • 相关文献

参考文献3

二级参考文献60

  • 1张艾彤.(2002).世界优秀统计工具SPSS11.0统计分析教程(高级篇).北京:北京希望电子出版社.
  • 2American Psychological Association. (2001). Publication manual of the American Psychological Association (5th ed.). Washington, DC: Author.
  • 3Bird, K. D. (2004). Analysis of variance via confidence intervals. Thousand Oaks: Wiley.
  • 4Bonett, D. G. (2008). Confidence intervals for standardized linear contrasts of means. Psychological Methods, 13, 99-109.
  • 5Cohen, J. (1965). Some statistical issues in psychological research. In B. B. Wolman (Ed.), Handbook of clinical psychology. New York: McGraw-Hill.
  • 6Cohen, J. (1969). Statistical power analysis for the behavioral sciences. New York: Academic Press.
  • 7Cohen, J. (1973). Eta-squared and partial eta-squared in fixed factor ANOVA designs. Educational and Psychological Measurement, 33, 107-112.
  • 8Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Academic Press.
  • 9Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
  • 10Ezekiel, M. (1930). Methods of correlation analysis. New York: Wiley.

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部