期刊文献+

Na_(0.44)MnO_(2)包覆Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)材料的性能

Performance of Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2) material coated with Na_(0.44)MnO
下载PDF
导出
摘要 采用溶胶-凝胶法在富锂Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2);材料表面包覆Na_(0.44)MnO_(2),制备Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2);/Na_(0.44)MnO_(2)复合材料,以改善循环性能。XRD、X射线光电子能谱(XPS)、SEM和透射电子显微镜(TEM)分析结果表明:制备的复合材料为核壳结构,在高温固相反应形成Na_(0.44)MnO_(2)时,不影响Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2);的固有结构。循环伏安(CV)、恒流充放电(GCD)测试结果表明:包覆Na_(0.44)MnO_(2)的复合材料,脱锂电位正移、嵌锂电位基本不变;放电比容量降低,但首次库仑效率、容量保持率提高,循环稳定性得到改善。以不同倍率在2.0~4.8 V循环后,30 mA/g充放电的比容量恢复到173 mAh/g,容量恢复率为100.0%;以300 mA/g循环200次的容量保持率为77.3%,较未包覆材料提高28.6%。 Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2);/Na_(0.44)MnO_(2)composites were prepared by coating Na_(0.44)MnO_(2)on the surface of lithium-rich Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2);material using sol-gel method in order to improve cycle performance.The results of XRD,X-ray photoelectron spectroscopy(XPS),SEM and transmission electron microscope(TEM) analysis showed that the prepared composites were core-shell structure.The inherent structure of Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2);was almost unaffected in the process of forming Na_(0.44)MnO_(2)by high-temperature solid-phase reaction.Cyclic voltammetry(CV) and galvanostatic charge-discharge(GCD) test results showed that the delithiation potential of the composites coated Na_(0.44)MnO_(2)had a positive offset, the lithium insertion potential was almost unchanged.The specific discharge capacity decreased, but the initial Coulombic efficiency and capacity retention rate increased, the cycle stability was improved.After cycled at different rates in 2.0-4.8 V,the specific capacity of charged-discharged at the current of 30 mA/g restored to 173 mAh/g, the capacity recovery ratio was 100.0%.The capacity retention rate was 77.3% after 200 cycles at the current of 300 mA/g, which was 28.6% higher than that of uncoated one.
作者 李龙 常鑫波 昝振峰 王力臻 LI Long;CHANG Xin-bo;ZAN Zhen-feng;WANG Li-zhen(Yutong Bus Co.,Ltd.,Zhengzhou,Henan 450016,China;College of Material and Chemical Engineering,Zhengzhou University of Light Industry,Zhengzhou,Henan 450002,China)
出处 《电池》 CAS 北大核心 2022年第2期167-171,共5页 Battery Bimonthly
基金 河南省高校重点科研项目计划基础研究专项(20zx008)。
关键词 锂离子电池 溶胶-凝胶法 包覆 Na_(0.44)MnO_(2)Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2) Li-ion battery sol-gel method coating Na_(0.44)MnO_(2) Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)
  • 相关文献

参考文献2

二级参考文献43

  • 1Scrosati B, Garche J. Lithium batteries: Status, prospects and future. J Power Sources, 2010, 195:2419-2430.
  • 2Cheng F, Liang J, Tao Z, et al. Functional materials for rechargeable batteries. Adv Mater, 2011, 23:1695-1715.
  • 3Li H, Wang Z, Chen L, et al. Research on advanced materials for Li-ion batteries. Adv Mater, 2009, 21:4593-4607.
  • 4Xu B, Qian D, Wang Z, et al. Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng, 2012, 73:51-65.
  • 5Wakihara M. Recent developments in lithium ion batteries. Mater Sci Eng, 2001, 33:109-134.
  • 6Xie J, Huang X, Zhu Z, et al. Hydrothermal synthesis of LiNixCo_xO2 cathode materials. Ceram Int, 2011, 37:665-668.
  • 7Rim H, Song J, Mumm D R. Electrochemical characteristics of LiNi07Co0.302 synthesized at 850℃ from carbonates or oxides of Li, Ni, and Co. Ceram Int, 2014, 40:3511-3516.
  • 8Gupta A, Chemelewski W D, Buddie Mullins C, et al. High-rate oxygen evolution reaction on Al-doped LiNiO2. Adv Mater, 2015, 27: 6063-6067.
  • 9Liu Z, Zhen H, Kim Y, et al. Synthesis of LiNiO2 cathode materials with homogeneous A1 doping at the atomic level. J Power Sources, 2011, 196:10201-10206.
  • 10Bie X, Gao Y, Yang X, et al. Observation of the second-order magnetic and reentrant spin-glass transitions in LiNi0.sMn0.502. J Alloys Compd, 2015, 626:150-153.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部