期刊文献+

基于DPC-SVDD的制造过程异常诊断 被引量:1

Anomaly diagnosis of manufacturing process based on DPC-SVDD
下载PDF
导出
摘要 文章针对生产过程中质量数据分布类型未知引起的传统质量控制图异常检测精度低的问题,提出结合支持向量数据描述(support vector data description,SVDD)和密度峰值聚类(density peaks clustering,DPC)的制造过程异常检测方法。采用DPC算法对质量特征数据进行聚类分析,将聚类结果作为模型输入训练得到各类超球体中心和决策边界;以此建立基于内核距离的DPC控制图,实现对生产过程质量波动的实时监控;最后将该控制图应用到再制造曲轴生产过程监控中。结果表明,该文提出的DPC控制图可以有效监测再制造曲轴生产过程质量异常波动,验证了该检测方法的可行性和有效性。 Aiming at the problem of low accuracy of traditional quality control chart anomaly detection caused by unknown quality data distribution type in production process,this paper proposes an anomaly detection method for manufacturing process that combines support vector data description(SVDD)and density peaks clustering(DPC).Firstly,the DPC algorithm is used for clustering analysis of quality characteristic data,and then the clustering results are used as model input to train various hypersphere centers and decision boundaries,so as to establish DPC control chart based on kernel distance and realize real-time monitoring of quality fluctuation in the production process.Finally,the control chart is applied to the production process monitoring of remanufactured crankshaft.The results show that the DPC control chart can effectively monitor the abnormal quality fluctuation in the production process of remanufactured crankshaft,thus verifying the feasibility and effectiveness of the method.
作者 沈维蕾 杨雪春 吴善春 SHEN Weilei;YANG Xuechun;WU Shanchun(School of Mechanical Engineering,Hefei University of Technology,Hefei 230009,China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第4期433-439,共7页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(51975003)。
关键词 支持向量数据描述(SVDD)算法 密度峰值聚类(DPC)算法 异常检测 密度峰值聚类(DPC)控制图 support vector data description(SVDD)algorithm density peaks clustering(DPC)algorithm anomaly detection density peaks clustering(DPC)control chart
  • 相关文献

参考文献5

二级参考文献46

共引文献30

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部