摘要
以聚氨酯热熔胶、铝粉和高氯酸铵组成的复合固体推进剂为研究对象,首先通过压延物理混合方法制备了复合固体推进剂,采用SEM和EDS方法对其形貌和组分分布进行了表征,测试了其力学性能、密度和机械感度。为深入了解聚氨酯热熔胶基复合推进剂的流变性能,进一步使用哈克流变仪(HAAKE MARS)研究了增塑剂、剪切速率和温度对其黏度的影响。结果表明,聚氨酯热熔胶基热塑性复合推进剂为假塑性流体,符合Ostwald-de Wale模型。与纯热熔胶体系相比,加入增塑剂的聚氨酯热熔胶基热塑性复合推进剂的高温黏度由4×10^(6) Pa·s降至1.5×10^(6) Pa·s,黏流活化能由41.53 kJ/mol降至28.57 kJ/mol。此外,聚氨酯热熔胶基热塑性推进剂随温度升高和剪切速率的增加其黏度逐渐减小,纯热熔胶基推进剂的黏流活化能随剪切速率的增加由41.53 kJ/mol降至31.20 kJ/mol。
The composite solid propellant containing polyurethane hot melt adhesive,aluminum powder and ammonium perchlorate was prepared via calendering method,its morphology and ingredients distribution were carried out by SEM and EDS,and the mechanical properties,density and mechanical sensitivity were characterized.The effects of plasticizer,shear rate and temperature on its viscosity were studied with HAAKE MARS.The results suggest that the polyurethane hot-melt adhesive thermoplastic composite propellant is a pseudoplastic fluid,which conforms to the Ostwald-de Wale model.Compared with pure hot melt adhesive,the high temperature viscosity of polyurethane hot melt adhesive-based composite propellant with plasticizer decreases from 4×10^(6) Pa·s to 1.5×10^(6) Pa·s,and the viscosity activation energy decreased from 41.53 kJ/mol to 28.57 kJ/mol.In addition,the viscosity of polyurethane hot-melt adhesion-based thermoplastic propellant decreases gradually with increasing the temperature and shear rate,and the viscosity activation energy of pure hot melt adhesion-based propellant decreases from 41.53 kJ/mol to 31.20 kJ/mol with an increase in shear rate.
作者
唐刚
罗运军
李霄羽
TANG Gang;LUO Yun-jun;LI Xiao-yu(School of Materials Science and Engineering,Beijing Institute of Technology,Beijing 100081,China;Key Laboratory for Ministry of Education of High Energy Density Materials,Beijing 100081,China)
出处
《火炸药学报》
EI
CAS
CSCD
北大核心
2022年第2期264-270,I0006,共8页
Chinese Journal of Explosives & Propellants
基金
国家自然科学基金(No.51973019,No.22175024)。
关键词
物理化学
热塑性推进剂
聚氨酯热熔胶
流变性能
黏流活化能
增塑剂
physical chemistry
thermoplastic propellant
polyurethane hot melt adhesive
rheological properties
viscous activation energy
plasticizer