摘要
对TRAMONTANAF等人的模型进行了简化,提出了有两个不连续点的一维映射模型,重点研究描述了该模型的递增扩张映射的混沌吸引子的相关分叉:首先研究排斥环的同宿分叉,并在参数平面(m_(L),m_(R))上确定混沌存在的区域,然后给出混沌吸引子边界碰撞分叉,并解释了引起吸引子几何结构变化的机理.
In this paper,the model of TRAMONTANA F,et al is simplified,and a 1-dimensional map model with two discontinuous points is proposed,which focus on the correlation bifurcation of the chaotic attractor of the incremental expansion map in the model.Firstly,the homoclinic bifurcation of repulsive cycle is studied,and the existence region of chaos is determined on the parameter plane(m_(L),m_(R)).Then the boundary collision bifurcation of chaotic attractor is given,and the mechanism of the change of attractor geometry structure is explained.
作者
顾恩国
孙维湘川
GU Enguo;SUN Weixiangchuan(College of Mathematics and Statistics,South-Central Minzu University,Wuhan 430074,China)
出处
《中南民族大学学报(自然科学版)》
CAS
北大核心
2022年第3期379-384,共6页
Journal of South-Central University for Nationalities:Natural Science Edition
基金
国家自然科学基金资助项目(61703442)
中央高校基本科研业务费专项资金资助项目(CZT20006)。
关键词
金融市场
多边界不连续映射
同宿分叉
边界碰撞分叉
混沌
financial market
multiboundary discontinuous map
homoclinic bifurcation
border collision bifurcation
chaos