期刊文献+

增材制件内部缺陷埋藏深度的激光超声定量检测 被引量:5

Laser Ultrasonic Quantitative Detection of Buried Depth for Internal Defects in Additive Manufacturing Parts
下载PDF
导出
摘要 针对增材制件内部缺陷检测,提出一种内部缺陷埋藏深度的定量检测方法。对用激光超声无损检测技术接收到的信号采用小波包分解技术进行分离并提取信号中的超声纵波,解决了超声表面波和纵波耦合影响时域特征提取的问题。根据检测过程中经过缺陷的纵波声程的变化,实现了精锻试块内部缺陷埋藏深度的定量检测,检测结果的相对误差为1.81%。在原检测方法的基础上增加异常点滤除算法,并应用于增材制件内部缺陷的检测,检测结果的相对误差为1.76%。 A quantitative detection method for the buried depth of internal defects was proposed for the detection of internal defects in additive manufacturing parts.The wavelet packet decomposition technology was used to separate and extract the ultrasonic longitudinal waves in the signals received by the laser ultrasonic nondestructive testing technology,which solvesd the problems that the coupling of ultrasonic surface wave and longitudinal wave affected the time-domain feature extraction.According to the changes of the longitudinal wave sound path of the defects during the detection processes,the quantitative detection of the buried depth of the internal defects in the precision forging samples was realized,and the relative error of the tests is 1.81%.An abnormal point filtering algorithm was added on the basis of the original detection method,and it was applied to the detection of internal defects of manufacturing additive parts with the relative error of detection of 1.76%.
作者 田雪雪 赵纪元 卢秉恒 王磊 TIAN Xuexue;ZHAO Jiyuan;LU Bingheng;WANG Lei(Institute of Advanced Manufacturing Technology,Xi'an Jiaotong University,Xi'an,710049)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2022年第8期952-959,共8页 China Mechanical Engineering
基金 国家自然科学基金(51975452)。
关键词 激光超声检测 增材制造 内部缺陷 埋藏深度 定量检测 laser ultrasonic detection additive manufacturing internal defect buried depth quantitative detection
  • 相关文献

参考文献6

二级参考文献40

  • 1钱梦,李志淳,魏墨.激光超声技术研究纳米材料的力学特性[J].应用声学,1994,13(1):5-12. 被引量:6
  • 2钱梦,张万春,吴田成.激光热弹激发超声脉冲的特性研究[J].声学学报,1995,20(1):1-10. 被引量:23
  • 3颜永年,林峰,张人佶,吴任东,卢清萍,熊卓,王小红.快速制造技术的最新进展及其发展趋势[J].电加工与模具,2006(B05):12-16. 被引量:13
  • 4Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12): 3315-3322.
  • 5Williams S W, Martina F, Addison A C, et al. Wire + arc additive manufacturing[J]. Materials Science and Technology, 2015.
  • 6Ouyang J H,Wang H J, Kovacevic R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding: process control and microstructure[J]. Materials and Manufacturing Processes, 2002, 17: 103- 124.
  • 7Wang H J, Jiang W H, Ouyang J H, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology, 2004, 148: 93- 102.
  • 8Gn J L, Ding J L, Williams S W, et al. The strengthening effect of inter-layercold working and post-deposition heat treatment on the additively manufactured A1-6.3Cu alloy[J]. Materials Science & Engineering A, 2016, 651:18-26.
  • 9Mayer H, Papakyriacou M, Zettl B, et al. Influence of porosity on the fatigue limit of die cast magnesium and aluminum alloys[J]. International Journal of Fatigue, 2003, 25(3): 245-256.
  • 10Toda H, Oogo H, Uesugi K, et al. Roles of pre-existing hydrogen micro-pores on ductile fracture[J]. Materials Transactions, 2009, 50: 2285- 2290.

共引文献93

同被引文献49

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部