摘要
基于欧洲中期天气预报中心的业务预报系统(EC)、美国国家环境预报中心的全球预报系统(GFS)、我国的中尺度数值业务预报系统(CMA-MESO)和全球预报系统(CMA-GFS)这4个预报系统的华东及周边地区(20°~40°N、110°~130°E)2020年1—4月逐日地面和高空风的0~72 h预报资料,利用复卡尔曼滤波方法(augmented complex extended Kalman filter,ACEKF)对其进行多模式集成预报试验,并对结果进行检验和评估。结果表明,ACEKF方法的预报效果优于多模式消除偏差集合平均、多模式超级集合预报等方法和单一模式的预报,能够进一步降低风速预报的误差,提高风场预报的预报准确率。ACEKF在高空风速预报上的改进效果要优于地面风速预报,在地形复杂地区改进效果更优,在所有预报时效的均方根误差和距平相关系数上均有体现。
Based on EC,GFS,CMA-MESO and CMA-GFS,the 0-72 h ensemble forecasts of daily surface and high-altitude zonal wind and meridional wind from January to April 2020 from the four models for East China and surrounding areas(20°-40°N,110°-130°E)are evaluated with the augmented complex extended Kalman filter(ACEKF)method.The results show that the ACEKF method outperforms the bias-removed ensemble mean,super-ensemble forecast and single-mode forecasts,and can further reduce the wind speed forecast errors.ACEKF can improve the upper-air wind speed forecasts better than those at ground level.In complex terrain areas the improved wind speed forecast is much better.These results are also reflected in the root-mean-square error and anomaly correlation coefficient for all forecast times.
作者
吴柏莹
智协飞
陈超辉
张秀年
WU Baiying;ZHI Xiefei;CHEN Chaohui;ZHANG Xiunian(Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disasters,Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044;Weather Online Institute of Meteorological Applications,Jiangsu,Wuxi 214000;Institute of Meteorology and Oceanography,National University of Defense Technology,Changsha 410073;Yunnan Meteorological Observatory,Kunming 650034)
出处
《气象》
CSCD
北大核心
2022年第4期393-405,共13页
Meteorological Monthly
基金
华东空管局研发项目(2019h463)
国家自然科学基金重大研究计划集成项目(91937301)
中国气象局气象预报业务关键技术发展专项[YBGJXM(2020)5A]共同资助。
关键词
复卡尔曼滤波技术
多模式集成预报
风速
数值预报
augmented complex extended Kalman filter(ACEKF)
multi-model ensemble forecast
wind speed
numerical prediction