摘要
北京城市气象研究院初步发展了3 km分辨率的华北对流尺度集合预报系统。为构建适用于该系统的初值扰动,设计了观测随机扰动方案,并与全球集合预报动力降尺度背景场相结合,利用三维变分同化方法构建了集合资料同化(EDA)初值扰动;开展了EDA方案在华北对流尺度集合预报系统中的批量试验,并与动力降尺度初值扰动方法进行了对比。结果表明:观测扰动构建方法合理,能够产生与观测误差量级相当且正态分布的观测扰动;动力降尺度方法初始离散度较大,EDA方案如果同化单一未扰动观测会约束各成员的集合离散度,而同化扰动观测之后相对于同化单一观测而言离散度增加,且基于观测扰动的EDA初值扰动场能够代表背景场和观测的不确定信息;从统计检验结果来看,相对于动力降尺度,EDA初值扰动方法可以大幅减少短预报时效的预报误差,集合离散度略有减少,而集合概率技巧评分具有较明显提升;降水概率预报检验结果表明EDA方法能够显著改善动力降尺度方法对强降水的漏报现象,对于局地降水的量级和时段具有更准确的预报能力;试验时段内的统计降水评分结果也表明,不管是小雨、中雨还是大雨量级,EDA方法均能够获得更好的概率预报评分效果。
At present,a prototype of Convection Permitting Ensemble Prediction System of North China is developed by Beijing Institute of Urban Meteorology,China Meteorological Administration.In order to construct initial condition perturbation for this ensemble prediction system,an ensemble data assimilation(EDA)initial condition perturbation method is developed based on observation perturbation and background state from global ensemble using 3-dimension variation data assimilation(3D-Var).The batch experiments of EDA method in the Convection Permitting Ensemble Prediction System of North China are carried out and compared with another initial condition perturbation method of dynamical downscaling.The results show that the construction of observation perturbation is scientific,and can produce observation perturbation of normal distribution with the magnitude in accordance with observation error.For the initial field,the members of dynamic downscaling are sufficiently dispersive,and the EDA with unperturbed observation will constrain the dispersion of members,while the EDA with perturbed observation can maintain the ensemble dispersion,and the generated perturbation can represent the uncertainty of both the background field and the observation.From the batch test results,the EDA can significantly reduce the forecast error of the short range compared with the dynamic downscaling,with the ensemble spread slightly decreased.The probability score also shows some improvements from EDA.The results of precipitation forecast show that the EDA method can significantly improve the precipitation forecast that it can provide more accurate magnitude and time period of local precipitation.The statistical score of precipitation forecast also show that EDA method has better probability forecast skill for light rain,moderate rain and heavy rain.
作者
张涵斌
计燕霞
陈敏
孙鑫
夏宇
ZHANG Hanbin;JI Yanxia;CHEN Min;SUN Xin;XIA Yu(Beijing Institute of Urban Meteorology,CMA,Beijing 100089;Inner Mongolia Meteorological Observatory,Huhhot 010051)
出处
《气象》
CSCD
北大核心
2022年第4期406-417,共12页
Meteorological Monthly
基金
国家重点研发计划(2018YFC1506804、2018YFF0300103)共同资助。
关键词
对流尺度集合预报
集合资料同化
初值扰动
convection permitting ensemble prediction system
ensemble data assimilation(EDA)
initial condition perturbation