期刊文献+

非接触式矿浆浓度在线检测系统的研究与应用

Research on Non-contact Online Pulp Concentration Detection System and Application
下载PDF
导出
摘要 矿山企业在选矿时,矿浆浓度是后续生产工艺参数选择的重要依据所以,矿浆浓度的测量对于企业非常重要。针对目前矿浆浓度测量存在的问题,设计开发了一套非接触式矿浆浓度在线检测系统,能够有效提高测量的准确度,并且使用方便.通过云平台能够使用户随时随地查看矿浆浓度数据,进而对后续生产进行规划。应用表明,本系统能够有效的测量矿浆浓度,设备运行稳定,误差小于人工测量,满足企业的生产需求。 In mineral professing,pulp concentration is an important basis for suhsequent prorluc-tion process parameter selection.Therefore,the measurement of pulp concentration is very important for enterprises.Aiming at the existing problems of pulp concentration measurement,a set of non-contact online detection system for pulp roncentration is designed and cieveloped,which can improve the accuracy of measurement effectively and is convenient to use.The users can check the concentration data anytime and anywhere by means of clourl platform,and then plan subsequent production.The application shows that the system can effectively measure pulp concentration,the equipment runs stably and the cievialion is less than manual measurement,which can meet the production requirements of enterprises.
作者 徐凯 柳小波 陈洪彬 XU Kai;LIU Xiao-ho;CHEN Hong-bin(Ansteel Group Guanhanshan Mining Co.,Ltd.;Shenyang Aulnmatinn Institute of Chinese Academy of Science;Robot and Intelligent Manufacturing Innovation Institute of Chinese Academy nf Science;Ansteel Group Mining Industry Design Institiite,Anshan 114044)
出处 《冶金设备管理与维修》 2022年第2期11-13,17,共4页 Metallurgical Equipment Management and Maintenance
关键词 矿浆浓度 超声波浓度计 差压浓度计 神经网络 云平台 Pulp concontration ultrasonic rlensitometer differential pressure densitometer neu-ral network clourl platform
  • 相关文献

参考文献6

二级参考文献34

  • 1汪兴亮,孙国宝.超声波浓度计用于检测浆体浓度的实践[J].金属矿山,1994,23(4):38-40. 被引量:2
  • 2Tucker P. The influence of pulp density on the selective grinding of ores [J]. International Journal of Mineral Processing,1984,12(4) :273- 284.
  • 3Blazquez G, Hoces M C,Castro F H. Influence of pulp density and cell size in minerals flotation [J]. Afinidad Revista De Quimica Teorica Y Aplicada, 2002,59 (500) :415-420.
  • 4Huang G B, Song S, You K. Trends in extreme learning machines:a review[J]. Neural Networks,2015,61 :32- 48.
  • 5Luo X, Chang X H, Ban X J. Regression and classification using extreme learning machine based on L1-norm and L2- norm[J]. Neurocomputing, 2016,174: 179- 186.
  • 6Huang G B, Zhou H, and Ding X. Extreme learning machine for regression and multiclass classification [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012,42 (2) :513-529.
  • 7Deng W Y,Zheng Q H,Chen L. Regularized extreme learning machine [ C]//Proceedings of IEEE Symposium on Computational Intelligence and Data Mining, 2009 : 389-395.
  • 8Zhang W,Ma Y,and Yang G. Study on parameter selection of phase space reconstruction for chaotic time series [J]. Advances in Information Sciences and Service Sciences,2012, 4(2) :67-77.
  • 9Hoerl A E,Kennard R W. Ridge regression:biased estimation for nonorthogonal problems[J ]. Technometrics, 1970,12 ( 1 ) : 55- 67.
  • 10何丽萍,罗仙平,付丹,吕中海,杨备,袁宪强.浮选作业浓度对锌选矿回收率的影响[J].有色金属(选矿部分),2009(1):1-3. 被引量:13

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部