期刊文献+

基于AUPF的TDOA几何定位跟踪算法研究

Research on TDOA geometric positioning tracking algorithm based on AUPF
下载PDF
导出
摘要 使用无源时差(TDOA)定位技术确定无人机等小型辐射源目标的位置是当前研究的热点,针对时差定位算法较为复杂的实际情况,推导了时差双曲线的几何解,并提出了一种基于自适应无迹粒子滤波(AUPF)技术的移动目标定位跟踪方法。通过仿真对该方法在不同场景的应用效果进行了验证,进一步比较分析了算法的定位精度。结果表明,基于自适应无迹粒子滤波的时差几何定位跟踪算法可以在多种情况下较好地拟合出目标真实运动轨迹,实现对运动目标的定位跟踪,同时拥有更低的定位误差和更高的轨迹包容度,使用该方法可以显著提高对非合作移动辐射源目标的位置估计性能。 Determining the position of small radiation source targets such as UAVs using passive time difference of arrival(TDOA)technique is a hot topic of current research.Because of the complexity of implementing the TDOA algorithm in practical situation,this paper derived the geometric solution of TDOA hyperbola,and proposed a moving target location and tracking method based on adaptive unscented particle filter(AUPF)technique.This paper verified the effectiveness of the method through simulation,and further analyzed the positioning accuracy of the algorithm.The results show that the TDOA geometric localization tracking algorithm based on AUPF can better fit the real motion trajectory of the target and achieve the localization tracking of the moving target in a variety of scenarios,with lower localization error and higher trajectory tolerance.This method can significantly improve the position estimation performance of non-cooperative moving radiation source targets.
作者 陈为业 刘广怡 李鸥 Chen Weiye;Liu Guangyi;Li Ou(School of Information Systems Engineering,PLA Information Engineering University,Zhengzhou 450001,China)
出处 《计算机应用研究》 CSCD 北大核心 2022年第5期1519-1523,共5页 Application Research of Computers
基金 信息工程大学重点学科建设项目。
关键词 到达时差 几何定位算法 自适应无迹粒子滤波 time difference of arrival(TDOA) geometric positioning algorithm adaptive unscented particle filter(AUPF)
  • 相关文献

参考文献7

二级参考文献35

  • 1薛锋,刘忠,张晓锐.高斯和粒子滤波器及其在被动跟踪中的应用[J].系统仿真学报,2006,18(z2):900-902. 被引量:3
  • 2邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 3李景熹,王树宗.UPF算法及其在目标跟踪问题中的应用[J].系统仿真学报,2007,19(3):675-677. 被引量:10
  • 4M Sanjeev Andampalam, Simon Maskell, N J Gordon, Tim Clapp. A tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING (S1053-587X (02)00569-X), 2002, 50(2): 174-188.
  • 5N J Gordon, D J Salmond, A F M Smith. Novel Approach to Nonlinear/ Non-Gaussian Bayesian State Estimation [J]. IEEE Proceedings-F (S0-7803-2914-7), 1993, 140(2): 107-111.
  • 6R V Merwe, A Doucet, Nando De Freitas, E Wan. The Unsented Particle Filter [R]// Technical Report, CUED/F-INPENG/TR 380. UK: Engineering Department, Cambridge University, 2000.
  • 7P M Djuric, J Kotecha, Jiangqui Zhang, Yufei Huang, T Ghirmai, M Bugallo, J Miguez. Particle Filtering [J]. IEEE SIGNAL PROCESSING MAGAZINE (S1053-5888), 2003, 20(5): 19,38.
  • 8Fredrik Gustafsson, Fredrik Gunnrsson, Niclas Bergman, Urban Forssell, Jonas Jansson, Per-Johan Nordlund. Particle filters for positioning, navigation and tracking [J]. IEEE Transaction on Signal Processing (S1053-587X (02)00554-8), 2002, 50(2): 425-437.
  • 9J D Hol. Resampling in Particle Filters [R]// Intership report, LiTH-ISY-EX-ET-0283-2004. Sweden: LinkOping University, 2004.
  • 10R Douc, O Cappe, E Moulines. Comparison of Resampling Schemes for Particle Filtering [J]. Proceedings of 4^th international Symposium on Image and Signal Processing and Analysis (ISPA) (S1845-5921), 2005, 9: 64-69.

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部