期刊文献+

二维Helmholtz方程的改进六阶紧致差分法 被引量:1

An Improved Compact Sixth-order Finite Difference Scheme for the 2D Helmholtz Equation
下载PDF
导出
摘要 为得到求解二维Helmholtz方程的高精度差分法,构造了一种改进六阶紧致差分格式:首先,给出一种带优化参数的六阶紧致差分格式的截断误差;然后,对此截断误差的部分项进行二阶紧致逼近,得到一种改进紧致差分格式;其次,对该格式进行了收敛性分析,证明其为六阶收敛的;最后,基于极小化数值频散的思想,给出该格式优化参数的加细选取策略。与带优化参数的六阶紧致差分格式相比,数值实验说明改进六阶紧致差分格式的数值精度有了显著提高,且其误差对波数k的依赖性更低。 To obtain a finite difference scheme with high accuracy for solving the 2D Helmholtz equation,an improved compact sixth-order difference scheme is constructed.Firstly,the truncation error of a compact sixth-order difference scheme with optimal parameters is presented.Then,some terms of the truncation error are approximated with second-order compact formulas to obtain an improved compact difference scheme.Next,the convergence analysis of the improved compact difference scheme is given,and it is proved that the proposed scheme enjoys sixth-order convergence.Based on minimizing the numerical dispersion,a refined choice strategy is proposed for choosing weight parameters.Compared with the compact sixth-order difference scheme with optimal parameters,numerical experiments show that,the numerical accuracy of the improved compact sixth-order difference scheme has been significantly improved,and the scheme’s error is less dependent on the wavenumber k.
作者 王肇君 吴亭亭 曾泰山 WANG Zhaojun;WU Tingting;ZENG Taishan(School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, China;School of Mathematics, South China Normal University, Guangzhou 510631, China;Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou 510006, China)
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2022年第2期90-100,共11页 Journal of South China Normal University(Natural Science Edition)
基金 山东省自然科学基金项目(ZR2021MA049,ZR2020MA031) 广东省自然科学基金项目(2018A0303130067) 中山大学广东省计算科学重点实验室开放课题(2021022) 广东省大数据分析与处理重点实验室开放基金项目(202101)。
关键词 HELMHOLTZ方程 紧致差分格式 数值频散 Helmholtz equation compact finite difference scheme numerical dispersion
  • 相关文献

参考文献6

二级参考文献39

  • 1李晓梅,吴建平.Krylov子空间方法及其并行计算[J].计算机科学,2005,32(1):19-20. 被引量:20
  • 2I.M. Babuska and S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev., 42:3 (2000), 451-484.
  • 3G. Bao and W. Sun, A fast algorithm for the electromagnetic scattering from a large cavity, SIAM J. Sci. Comput., 27:2 (2005), 553-574.
  • 4E. Erturk and C. Gokcol, Fourth-order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers, Int. J. Numer. Meth. Fl., 50 (2006), 421-436.
  • 5I. Harari and E. Turkel, Accurate finite difference methods for time-harmonic wave propagation, J. Comput. Phys., 119 (1995), 252-270.
  • 6M. Li, T. Tang and B, Fornberg, A compact fourth-order finite difference scheme for the'steady incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fl.. 20 (1995), 1137-1151.
  • 7M. Li and T. Tang, A compact fourth-order finite difference scheme for unsteady Navier-Stokes equations, J. Sci. Comput., 16 (2001), 29-46.
  • 8Y.V.S.S. Sanyasiraju and V. Manjula, Higher order semi compact scheme to solve transient incompressible Navier-Stokes equations, Comput. Mech., 35 (2005), 441-448.
  • 9J. Shen and L. Wang, Spectral approximation of the Helmholtz equation with high wave numbers, SIAM J. Numer. Anal., 43:2 (2005), 623-644.
  • 10J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, Beijing, 2007.

共引文献28

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部