摘要
为得到求解二维Helmholtz方程的高精度差分法,构造了一种改进六阶紧致差分格式:首先,给出一种带优化参数的六阶紧致差分格式的截断误差;然后,对此截断误差的部分项进行二阶紧致逼近,得到一种改进紧致差分格式;其次,对该格式进行了收敛性分析,证明其为六阶收敛的;最后,基于极小化数值频散的思想,给出该格式优化参数的加细选取策略。与带优化参数的六阶紧致差分格式相比,数值实验说明改进六阶紧致差分格式的数值精度有了显著提高,且其误差对波数k的依赖性更低。
To obtain a finite difference scheme with high accuracy for solving the 2D Helmholtz equation,an improved compact sixth-order difference scheme is constructed.Firstly,the truncation error of a compact sixth-order difference scheme with optimal parameters is presented.Then,some terms of the truncation error are approximated with second-order compact formulas to obtain an improved compact difference scheme.Next,the convergence analysis of the improved compact difference scheme is given,and it is proved that the proposed scheme enjoys sixth-order convergence.Based on minimizing the numerical dispersion,a refined choice strategy is proposed for choosing weight parameters.Compared with the compact sixth-order difference scheme with optimal parameters,numerical experiments show that,the numerical accuracy of the improved compact sixth-order difference scheme has been significantly improved,and the scheme’s error is less dependent on the wavenumber k.
作者
王肇君
吴亭亭
曾泰山
WANG Zhaojun;WU Tingting;ZENG Taishan(School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, China;School of Mathematics, South China Normal University, Guangzhou 510631, China;Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou 510006, China)
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2022年第2期90-100,共11页
Journal of South China Normal University(Natural Science Edition)
基金
山东省自然科学基金项目(ZR2021MA049,ZR2020MA031)
广东省自然科学基金项目(2018A0303130067)
中山大学广东省计算科学重点实验室开放课题(2021022)
广东省大数据分析与处理重点实验室开放基金项目(202101)。