期刊文献+

基于稀疏预处理和XGBoost的生化检验智能审核 被引量:1

Intelligent Audit of Biochemical Test Based on Sparse Preprocessing and XGBoost
下载PDF
导出
摘要 临床生化检验数据为医生进行疾病诊断提供最有力的数据支撑,当前采用基于规则的半自动异常检验值过滤和医务人员人工审核的方式,存在缺乏学习能力、效率低下的问题。为此,提出一种将检测数据进行稀疏化处理并使用极端梯度提升算法进行智能审核的机器学习模型。首先使用深度神经网络对医院信息系统导出的,经过脱敏、清洗后的检验数据用聚类算法实现样本的平衡采样,再用深度神经网络进行缺失值填充,并将选定的数据预处理成稀疏矩阵,最终使用极端梯度提升算法完成生化检验数据的智能审核。实验结果表明,论文采用的模型能实现95%左右的智能审核准确率,同时运算性能显著优于其他机器学习模型。 Clinical biochemical test data provides the most powerful data support for doctors to carry out disease diagnosis.At present,semi-automatic abnormal test value filtering based on rules and manual audit by medical staff are adopted,which has the problems of lack of learning ability and low efficiency.For this reason,a machine learning model is proposed,which thins the detection data and uses extreme gradient boost algorithm for intelligent audit.First of all,the test data derived from the hospital information system through desensitization and cleaning are used to realize the balanced sampling of samples with clustering algorithm,then the missing values are filled with depth neural network,and the selected data is preprocessed into sparse matrix,and finally the intelligent audit of biochemical test data is completed with extreme gradient boost algorithm.The experimental results show that the model used in this paper can achieve about 95%of the accuracy of intelligent audit,and its performance is significantly better than other machine learning models.
作者 何涛 陈剑 HE Tao;CHEN Jian(Neusoft Research,Northeastern University,Shenyang 110169;Research Center of Safety Engineering Technology in Industrial Control of Liaoning Province,Shenyang 110169)
出处 《计算机与数字工程》 2022年第4期796-800,共5页 Computer & Digital Engineering
基金 国家重点研发计划(编号:2018YFC0830601) 辽宁省重点研发计划(编号:2019JH2/10100027) 教育部基本科研业务费项目(编号:N171802001) 辽宁省“兴辽英才计划”项目(编号:XLYC1802100)资助。
关键词 深度神经网络 稀疏数据 聚类算法 极端梯度提升 deep neural network sparse data clustering algorithm extreme gradient boost
  • 相关文献

参考文献8

二级参考文献26

  • 1邱骏,顾国浩,吴昀,金陵,汤培勤,沈隽,刘宗建,吴清岭.医学检验网络信息管理系统的研发[J].临床检验杂志,2005,23(1):57-58. 被引量:19
  • 2黄宇烽.临床检验诊断工作中的人文思考[J].医学研究生学报,2006,19(3):193-194. 被引量:4
  • 3周智刚,张建臣,郭长友.计算机实验室软件的自动化管理[J].实验室研究与探索,2006,25(11):1376-1379. 被引量:6
  • 4Clinical and Laboratory Standards Institute. Auto-verification of clinical laboratory test results; approved guideline[S]. AUTO10-A, CLSI, 2006.
  • 5Gomez-Ruben R, Alvarez V, Ventura M, et al. Current status of verification practics in clinical biochemistry in Spain [J]. Clin Chem Lab Med, 2013,51(9): 1739-1746.
  • 6CLSI. CLSI AUTO10-A(ISBN 1-56238-620-4) Auto verification of clinical laboratory test results; approved guideline. CLSI, 2006.
  • 7Torke N, Boral L, Nguyen T, et al. Process improvement and operational efficiency through test result autoverification [J]. Clin Chem, 2005,51(12):2406-2408.
  • 8Guidi GC, Poll G, Bassi A, et al. Development and implementation of an automatic system for verification, validation and delivery of laboratory test results [J]. Clin Chem Lab Med, 2009,97(11): 1355-1360..
  • 9Corberand JX, Rogari E, Laharrague P, et al. Computer-assisted validation system applied to hematology : Valab-haemato[J]. Ann Biol Clin, 1994,52(6):447-450.
  • 10Oosterhuis WP, Ulenkate H J, Goldschmidt HM. Evaluation of LabRespond, a new automated validation system for clinical laboratory[J]. Clin Chem, 2000,46(11):1811-1817.

共引文献113

同被引文献21

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部