期刊文献+

基于MATLAB的压缩感知重构漏水信息改进算法研究 被引量:1

Research on Improved Algorithm of Compressed Sensing Reconstruction of Water Leakage Information Based on MATLAB
下载PDF
导出
摘要 地下供水管道漏水监测时,采集到的漏水信号在传输过程中因节点自身限制,导致丢失部分有用信息,从而影响漏水监测的准确性。通过对该问题提出的改进压缩感知的重构方法,用传感器节点采集地下供水管道漏水声信号,在压缩采样匹配追踪(CoSaMP)算法的基础上,使用自适应方法得到最佳输出信号并改变重构算法中残差的初值,参与计算的残差初值带有更多信息,可得到更加完整的重构结果,从而恢复出更多原始信号的信息,提高漏水监测的准确性。经过多次Matlab仿真实验结果证明,即使在低圧缩比下,该方法也能保留更多有效的采集信息,重构成功率较CoSaMP算法提高了14.17%。 In the leakage monitoring of underground water supply pipelines,some useful information of water leakage signal collected on-site always lost due to the limitation of the node itself during the transmission process,which greatly affects the accuracy of water leakage monitoring.To solve the problem,we propose an improved reconstruction method based on compressed sensing theory in the paper.In the method,the leaking acoustic signal of underground water supply pipes is collected by sensor nodes.Based on the compressive sampling matching pursuit(CoSaMP)algorithm,the self-adaptive method is used for obtaining optimal output signal,and the initial value of the residual in the reconstruction algorithm is changed.Because of the rich information carrying of the initial value of the residual involved in the calculation,the more complete reconstruction result is obtained and more useful information are recovered from the original signal,hence to improve the accuracy of water leakage monitoring.By many times Matlab simulation experiments,it is proved that the method can retain more effective information collected on-site even at low compression ratios and the reconstruction power is increased by 14.17%compared with the CoSaMP algorithm.
作者 赵琦 郭改枝 ZHAO Qi;GUO Gai-zhi(College of Computer Science and Technology,I nner Mongolia Normal University,Hohhot 010022,China)
出处 《内蒙古师范大学学报(自然科学版)》 CAS 2022年第3期319-324,共6页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 内蒙古自治区自然科学基金资助项目(2020MS06029,2020LH06009) 内蒙古自治区科技创新引导基金资助项目(KCBJ2018006) 内蒙古自治区关键技术攻关计划资助项目(2020GG0165)。
关键词 压缩感知 漏水监测 重构算法 仿真实验 compressed sensing water leakage monitoring reconstruction algorithm simulation experiments
  • 相关文献

参考文献3

二级参考文献31

  • 1DONOHO D L. Compressed sensing[ J]. IEEE Trans on Information Theory,2006,52(4) :1289 - 1306.
  • 2BARANIUK R G. Compressive sensing [ Lecture Notes ] [ J ]. IEEE Signal Processing Magazine, 2007,24 ( 4 ) : 118 - 121.
  • 3DONOHO D, TSAIG Y. Extensions of compressed sensing [ J ]. Signal Processing,2006,86 ( 3 ) : 533 - 548.
  • 4GRIFFIN A, TSAKALIDES P. Compressed sensing of audio signals using multiple sensors[ C ]//Proc 16th European Signal Processing Conference. Lausanne, Switzerland ,2008.
  • 5GEMMEKE J F,CRANEN B. Using sparse representations for missing data imputation in noise robust speech recognition [ C ]//European Signal Processing Conf. Lausanne ,Switzerland ,2008.
  • 6GIACOBELLO D, CHRISTENSEN M G, MURTHI M N, et al. Retrieving sparse patterns using a compressed sensing framework : applications to speech coding based on sparse linear prediction [ J ]. Signal Processing Letters ,2010,17 ( 1 ) : 103 - 106.
  • 7SREENIVAS T V, KLEIJN W B. Compressive sensing for sparsely excited speech signals [ C ] jj IEEE International Conference on Acoustics, Speech and Signal Processing( ICASSP 2009 ). 2009:4125 4128.
  • 8XU T T, YANG Z, SHAO X. Novel speech secure communication system based on information hiding and compressed sensing [ C ]// Fourth International Conference on Systems and networks communications ( ICSNC09 ). 2009:201 - 206.
  • 9MALLAT S. A Wavelet Tour of Signal Processing [ M ]. 2ed. New York : Academic Press, 1995.
  • 10CHEN S S,DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[ J]. SIAM Review,2001,43 (1) :129 -159.

共引文献38

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部