期刊文献+

改进Tree⁃LSTM网络的情感分析方法 被引量:1

Sentiment analysis method base on Tree⁃LSTM network
下载PDF
导出
摘要 在句子级情感分类任务中,针对深度学习模型易受噪声干扰而导致的分类效果差问题,提出一种结合对抗训练和注意力机制(Attetion)改进树形长短时记忆网络(Tree⁃LSTM)的模型。该模型为多层级结构,包括对抗样本的词嵌入层、Tree⁃LSTM层、注意力机制层。模型中词嵌入层即在词向量添加扰动形成对抗样本,将原始样本与对抗样本一起训练模型,对模型进行正则化处理,增强模型的泛化能力,Tree⁃LSTM层可以提取句子结构特征,注意力机制层对Tree⁃LSTM树的节点赋予不同的权重值以区分不同程度的情感词汇,从而改善模型的分类性能。实验结果显示在数据集SST、MR、COAE2014上,提出模型相比传统模型NBSVM、MNB、LSTM准确率明显提高,比未引入对抗样本的Att⁃TLSTM模型准确率提高,有更快的收敛速度和稳定性,证明该方法能有效提高情感分类任务中的分类性能。 In the sentence⁃level emotion classification tasks,the classification effect of the deep learning model is poor because the model is easily disturbed by noise.Therefore,an improved Tree⁃LSTM(long short⁃term memory)model that combines adversarial training and attention mechanism is proposed.The model is composed of a multi⁃level structure,including the word embedding layer for adversarial sample,the Tree⁃LSTM layer and the attention mechanism layer.In the word embedding layer,perturbation is added to the word vector to form the adversarial sample,and then both the original sample and the adversarial sample are used together to train the model.The model is regularized and its generalization ability is enhanced.In the Tree⁃LSTM layer,sentence structure features can be extracted.Attention mechanism layer gives different weights to the nodes of Tree⁃LSTM tree to distinguish emotional vocabularies at different levels,so as to improve the classification performance of the model.The experimental results are shown on the data sets SST,MR and COAE2014.In comparison with the traditional models of NBSVM,MNB and LSTM,the accuracy of the proposed model is obviously improved.In comparison with the Att⁃TLSTM model without introducing the adversarial sample,the accuracy of the proposed model is improved.In addition,its convergence speed is faster and more stable,which proves that this method can effectively improve the classification performance in emotion classification tasks.
作者 邹东尧 王斌 王丽萍 ZOU Dongyao;WANG Bin;WANG Liping(College of Computer and Communication Engineering,Zhengzhou University of Light Industry,Zhengzhou 450000,China)
出处 《现代电子技术》 2022年第9期66-71,共6页 Modern Electronics Technique
基金 河南省科技攻关项目(212102210407)。
关键词 情感分析 深度学习 Tree⁃LSTM模型 注意力机制 对抗训练 对抗样本 依存句法 sentiment analysis deep learning Tree⁃LSTM model attention mechanism adversarial training adversarial sample dependency phrasing
  • 相关文献

参考文献3

二级参考文献14

共引文献57

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部