期刊文献+

实时信息下共线公交线路发车时刻表的协同优化 被引量:1

Collaborative Optimization of Departure Timetable for Common Bus Lines Under Real-Time Information
下载PDF
导出
摘要 为改善实时信息下共线公交线路的运营服务水平,提出了一种实时信息下的共线公交线路发车时刻表优化模型。首先,基于时变的客流需求和路况信息,考虑实时信息下乘客出行行为动态变化导致的共线线路客流分布变化,以乘客出行成本、公交企业运营成本为优化目标建立共线公交线路发车时刻表协同优化模型。然后,选择基于动态拓扑结构的改进粒子群优化算法(PSO-DT)对模型进行求解。最后,以大连市两条共线线路为例进行分析,给出了优化后的发车时刻表、车辆运行轨迹图,分析了有无实时信息下客流分布的差异。结果表明:与现有方案相比,文中方案可使乘客出行成本降低12.6%,公交公司运营成本降低8.3%,总成本降低12.3%,发车次数整体上减少3次,乘客平均承载量增加3人,瞬时最高承载量减少4人,各车次承载量标准差降低2.192人,优化后线路服务水平有所提升,各车次的载客量分布更加均衡,说明文中模型是有效的。 In order to improve the level-of-service of common bus line operation under real-time information,this paper proposed an optimization model of common line departure schedule based on real-time information.Firstly,it considered the change of passenger flow distribution caused by the dynamic change of passenger travel behavior under real-time information based on the time-varying passenger flow demand and real-time road condition information,and established the optimization model of departure schedule of common bus lines with the optimization objectives of passenger travel cost and bus enterprise operation cost.Then,it selected the improved particle swarm optimization algorithm(PSO-DT)based on dynamic topology to solve the model.Based on the analysis of two common lines in Dalian city,the optimized departure schedule and vehicle trajectory were given and the difference of pa-ssenger flow distribution with and without real-time information was analyzed.The results show that,as compared with the current scheme,the proposed scheme can reduce the travel cost of passengers by 12.6%,the operating cost of bus companies by 8.3%,the total cost by 12.3%,the number of bus departure by 3,the instantaneous maximum carrying capacity by 4 people,and the standard deviation of carrying capacity of each train by 2.192 people,and increase the average carrying capacity of passengers by 3 people.Therefore,the level-of-service of the optimized line is improved,and the passenger flow distribution among vehicles is more balanced,which verifies the effectiveness of the proposed model.
作者 龙雪琴 李景涛 王建军 拓小静 范镓麟 LONG Xueqin;LI Jingtao;WANG Jianjun;TUO Xiaojing;FAN Jialin(College of Transportation Engineering,Chang'an University,Xi'an 710064,Shaanxi,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第2期23-32,共10页 Journal of South China University of Technology(Natural Science Edition)
基金 陕西省自然科学基础研究计划一般项目(青年)(2019JQ-212)。
关键词 公共交通 实时信息 共线公交线路 乘客出行行为 发车间隔 改进粒子群优化 public traffic real-time information common bus lines passenger travel behavior departure interval improved particle swarm optimization
  • 相关文献

参考文献7

二级参考文献65

  • 1曹莲英,侯琳,李文勇.多目标演化算法在公交车辆发车间隔优化中的应用[J].东南大学学报(自然科学版),2009,39(S1):260-265. 被引量:3
  • 2陈国俊,杨晓光,刘好德,安健.基于动态百分位行程时间的公交到站时间预测模型[J].公路交通科技,2009(S1):102-106. 被引量:10
  • 3朱从坤,丁建霆,陈瑜.公交线路OD反推的结构化模型研究[J].哈尔滨工业大学学报,2005,37(6):851-853. 被引量:22
  • 4刘好德,杨晓光.基于改进遗传算法的公交线网优化设计研究[J].计算机工程与应用,2007,43(8):10-14. 被引量:15
  • 5Bonabeau E,Dorigo M,Theraulaz G.Swarm Intelligence:From Natural to Artificial Systems.Oxford University Press,New York,1999
  • 6Kennedy J,Eberhart R C.Particle Swarm Optimization.In:Proceedings of the IEEE International Conference on Neural Networks,1995.1942~1948
  • 7Hu X,Eberhart R C,Shi Y H.Engineering Optimization with Particle Swarm.In:Proceedings of the IEEE Swarm Intelligence Symposium,Indianapolis,Indiana,USA,2003.53~57
  • 8Parsopoulos K E,Vrahatis M N.Recent approaches to global optimization problems through particle swarm optimization.Natrual Computing,2002,1 (2-3):235~306
  • 9Wang F,Qiu Y H.Optimal Tuning of PID Controllers Based on an Improved Particle Swarm Algorithm.In:Proceeding of the 2006 International Symposium on AI-50 Years' Achievements,Future Directions and Social Impacts (ISAI'06),Beijing,China,2006.367~370
  • 10Hendtlass T.Preserving Diversity in Particle Swarm Optimisation.Lecture Notes in Computer.Science,2003.31~40

共引文献77

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部